

FACULTY OF ENGINEERING AND TECHNOLOGY

MASTER OF SOFTWARE ENGINEERING

Optimizing Software Test Case Generation

using Light-Weight Variations of

Indicator-Based Evolutionary Algorithm

Author:

Hadi Awad

Supervisor:

Dr. Abdel Salam Sayyad

A thesis submitted in fulfillment of the requirements for the

degree of Master of Science in Software Engineering at

Birzeit University, Palestine

June 7, 2020

FACULTY OF ENGINEERING AND TECHNOLOGY

MASTER OF SOFTWARE ENGINEERING

Master Thesis

Optimizing Software Test Case Generation using Light-Weight Variations of Indicator-Based

Evolutionary Algorithm

Qå
�
�

ñÖÏ @ úÎ«
�
éÖ

ßA

�
®Ë @

�
éKPñ¢

�
JË @

�
éJÓ 	PP@ñ

	
mÌ'@ úÎ«

�
HCKYª

�
K Ð@Y

	
j

�
J�AK.

�
HAJm.

×Q�. Ë @
�
èXñk. �m

	
¯ �

H@PAJ.
�
J

	
k@ ZA

�
�

	
� @

	á��m�
�
'

Author:

Hadi Awad

Supervisor

Dr. Abdel Salam Sayyad

Committee

Dr. Abdel Salam Sayyad

Dr. Ahmad Afaneh

Dr. Samer Zein

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

in Software Engineering at Birzeit University, Palestine

June 7, 2020

Approved by the thesis committee:

Dr. Abdel Salam Sayyad, Birzeit University

Dr. Ahmad Afaneh, Birzeit University

Dr. Samer Zein, Birzeit University

Date approved:
2020/09/07

Tec
Pencil

Tec
Pencil

Declaration of Authorship
I, Hadi Awad, declare that this thesis titled, “Optimizing Software Test
Case Generation using Light-Weight Variations of Indicator-Based Evo-
lutionary Algorithm” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a
master degree at Birzeit University.

• Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other in-
stitution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with oth-
ers, I have made clear exactly what was done by others and what I
have contributed myself.

Signed:

Date:

Abstract
As the development of an application grows larger and becomes more rapid

and complex, and since the modern software development paradigm surge ex-

treme development and continuous delivery, Software testing be-comes a core

activity in software development life cycle to ensure that the software product

meets the requirements and has no failures. However, it has been generally ob-

served that traditional manual testing can’t meet the development pace in terms

of providing high code coverage as well as effectiveness in finding bugs, and

thus continuous integration and automated testing has risen recently to cover

this gap.

In this research, we intend to use white box testing techniques to analyze a

program source code and automatically generate feasible test cases that examine

the system under test and check its behavior. The test cases properness and

feasibility are measured by certain metrics, such as code coverage, execution

time and resource usage. For a test case to be valuable for the developer it should

at least achieve code coverage with minimal time to execute.

Many evolutionary algorithms have been successfully adopted in automat-

ing test case generation. Nevertheless, Indicator Based Evolutionary Algorithm

(IBEA) was never examined since it requires intense computation time to eval-

uate the quality of Solutions. Thus, we intend to employ light-computation fla-

vors of IBEA as a multi objective algorithm in generating test suites

�
	

jÊÓ

h.
	
XAÖ

	
ß

	
à

B

�
@Q

	
¢

	
�ð , @

�
YJ

�
®ª

�
Kð

�
é«Qå� Q�

�»

@ iJ.�

@ Y

�
¯ð Q�
J.» É¾

�
��. ñÒ

	
JK

�
HA

�
®J
J.¢

�
JË @ QK
ñ¢

�
�

	
à@

PAJ.
�
J

	
k@

	
àA

	
¯ ,

�
éªK. A

�
J
�
JÖÏ @ Õæ

Ê�

�
�Ë @

�
HAJ
Ë

�
@ð QK
ñ¢

�
JË @

�
��

	
� ú

	
¯ ¨A

	
®
�
KP@ I. Ê¢

�
JK

�
é
�
JK
YmÌ'@ l .

×@Q�. Ë @ QK
ñ¢
�
�

i.
�
J
	
JÖÏ @

�
éJ
J. Ê

�
K

	
àAÒ

	
�Ë ,

�
HAJ
m.

×Q�. Ë @ QK
ñ¢
�
�

�
èAJ
k

�
èPðX ú

	
¯ A

�
J
�A�

@ A

�
£A

�
�

	
� iJ.��

�
HAJ
m.

×Q�. Ë @

B ø

YJ
Ê
�
®
�
JË @ ø

ðYJ
Ë @ PAJ.

�
J

	
kB@

	
à

@ A

�
ÓñÔ« Yg. ð Y

�
®

	
¯ , ½Ë

	
X ©Óð .

A¢

	
k ø

@

	
àðX 	áÓ

�
HAJ. Ê¢

�
JÒÊË

�
HAJ
m.

×Q�. ÊË ú

æ�A�B@

	
àñºÖÏ @

�
ém.
×Q�. Ë @

�
é

	
ªÊË

�
éJ
ËA«

�
éJ
¢

	
ª

�
K Q�

	
¯ñ

�
K

�
IJ
k

	áÓ QK
ñ¢
�
JË @

�
é«Qå� ú

æ
.
ÊK

�
éJ
Ë

�
B@

�
HAJ
m.

×Q�. Ë @
�

HA�ñm
	
¯ �

éK. A
�
J»

	
àA

	
¯ , ú

ÍA

�
JËAK. ð , ZA¢

	
k

B@ úÎ« Pñ

�
JªË@ ú

	
¯

�
éJ
ËAª

	
®Ë @

�
IJ
k

	áÓð

.
�
èñj.

	
®Ë @ è

	
Yë

�
éJ
¢

	
ª

�
JË @ �Q

	
k

ñÓ

�
HYg. ð Y

�
¯

�
ém.
×Q�. Ë @

�
HAJ
Ë

�
@ ú

	
¯ QÒ

�
J�ÖÏ @ Aêm.

×Xð

PY�ÖÏ @ Xñk. ð úÎ«
�
éÖ

ßA

�
®Ë @

�
èXñm.

Ì'@ �m
	
¯ �

HAJ

	
J
�
®
�
K Ð@Y

	
j

�
J�@ Ð

	Q�
�ª

	
K , ù

ÒÊªË@

�
IjJ. Ë @ @

	
Yë ú

	
¯

AîD
.
k. @ð 	áÓ ú

�
æË @ð ù

KA

�
®Ê

�
K É¾

�
��.

�
éÖ

ßCÓ PAJ.

�
J

	
k@

�
HBAg ZA

�
�

	
� @

ð

�
HAJ
m.

×Q�. ÊË
�
é
	
KñºÖÏ @

�
é

	
ªÊË @ ÉJ
Êj

�
JË

è
	
Yë PAJ.

�
J

	
kB@

�
HBAg

�
éÓZCÓ �AJ

�
¯ Õ

�
æK
 . é»ñÊ� 	áÓ

�
�

�
®j

�
JË @ð PAJ.

�
J

	
kB@ YJ

�
¯ ÐA

	
¢

	
JË @ �m

	
¯

Ð@Y
	

j
�
J�@ð

	
YJ

	
®

	
J
�
JË @

�
I

�
¯ð ,

�
ém.
×Q�. Ë @

�
é

	
ªÊË

�
éJ
ËAªË @

�
éJ
¢

	
ª

�
JË @ É

�
JÓ ,

�
é
	
JJ
ªÓ ��
K
A

�
®Ó úÎ« Aî

	
DÓ øðYm.

Ì'@ð

	
à

@ I. m.

�'

 ,

�
HAJ
m.

×Q�. Ë @ Pñ¢ÖÏ
�
éÒJ

�
¯

�
H@

	
X PAJ.

�
J

	
kB@

�
éËAg

	
àñº

�
K ú

¾Ë , éJ
Ê«ð . H. ñ�AmÌ'@ XP@ñÓ

.
	
YJ

	
®

	
J
�
JÊË

�
I

�
¯ñË@ 	áÓ ú

	
GX

B@ YmÌ'@ ©Ó

�
ém.
×Q�. Ë @

�
é

	
ªÊË

�
éJ
ËAªË @

�
éJ
¢

	
ª

�
JË @ É

�
¯

B@ úÎ«

�
�

�
®m�

�
'

�
HBAg ZA

�
�

	
� @

�
é
�
JÖ

�
ß

@ ú

	
¯ hAj.

	
JK.

�
éK
Pñ¢

�
JË @

�
HAJ
Ó

	PP@ñ
	
mÌ'@ 	áÓ YK
YªË@ XAÒ

�
J«@ Õç

�
' , @Q

	
k

ñÓ

A
��
J
�
¯ð I. Ê¢

�
J
�
K Aî

	
E

B Qå

�
�

ñÖÏ @ úÎ«
�
éÖ

ßA

�
®Ë @

�
éK
Pñ¢

�
JË @

�
éJ
Ó

	PP@ñ
	
mÌ'@ �m

	
¯ Õ

�
æK
 ÕË , ½Ë

	
X ©Óð .PAJ.

�
J

	
kB@

�
éJ
Ó

	PP@ñ
	
mÌ'@ úÎ«

�
HCK
Yª

�
K Ð@Y

	
j

�
J�@ Ð

	Q�
�ª

	
K A

	
J
	
K A

	
¯ , ½Ë

	
YËð . ÈñÊmÌ'@

�
èXñk. Õæ

J

�
®
�
JË A

�	
®
�
JºÓ

.PAJ.
�
J

	
kB@

�
éÓ 	Qk ZA

�
�

	
� @ ú

	
¯

	
¬@Yë

B@

�
èXYª

�
JÓ

�
éJ
Ó

	PP@ñ
	
m» Qå

�
�

ñÖÏ @ úÎ«
�
éÖ

ßA

�
®Ë @

�
éK
Pñ¢

�
JË @

Acknowledgements
First all, I would like to express my sincere gratitude to my family; es-

pecially those two super heroes for their unlimited support and courage

during the past years.

I would like to express my sincere appreciation to my advisor Dr. Ab-

del Salam Sayyad for his guidance, instructions and advice.

Special thanks to all instructors of the software engineering master

at Birzeit university whom I had the chance to cooperate with and learn

from.

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Research Questions . 6

1.3 Research Contribution . 10

1.3.1 Enhancing EV OSUITE Tool with IBEA algorithms 10

1.3.2 Validating Contribution on well Known set of Classes 11

1.3.3 Addressing the Problem Through Many objectives 12

1.3.4 Comparison Between IBEA, mIBEA and NSGA-II . 13

1.4 Research Overview . 14

1.5 Research Activities . 15

2 Background 16

2.1 Evolutionary Algorithm . 17

2.1.1 General Design of Genetic Algorithm 18

2.1.2 Genetic Operators 19

2.2 Single-objective Evolutionary Algorithms 21

2.3 Multi-objective Evolutionary Algorithms 22

2.3.1 Indicator based Evolutionary Algorithm 24

2.3.2 A Modified Indicator-based Evolutionary Algorithm

(mIBEA) . 25

2.3.3 Non-dominated Sorting Genetic Algorithm II . . . 27

2.4 EVOSUITE . 30

2.4.1 Unit Testing and Class Under Test 31

2.4.2 Types of Code Coverage 32

2.4.3 Whole Test Suite Generation 36

2.4.4 Problem Representation 37

3 Related Work 39

3.1 Single Structural Target Approach 40

3.2 Multi Structural Target Approach 45

3.3 Adjusting Evolutionary Algorithms 53

3.4 Thesis Distinction from Other Studies 56

3.5 Literature Review Summary 57

4 Research Methodology And Experiment Setup 59

4.1 Experiment Data Sources . 60

4.2 Experiment Setup . 61

4.2.1 Chromosome Structure 61

4.2.2 Fitness Function . 64

4.2.2.1 Branch distance 65

4.2.2.2 Approach Level 66

4.2.2.3 Fitness Function: Branch Coverage 66

4.2.3 Evaluation Metrics 68

4.3 Algorithms and EvoSuite 68

4.3.1 Genetic Search Operators of EVOSUITE 69

4.3.1.1 Chromosome Crossover 70

4.3.1.2 Chromosome Mutation 71

4.3.2 Random Test Case Generation 73

4.4 Experiment Assumptions 74

5 Experiment Results and Analysis 76

5.1 Algorithm Comparison . 76

5.1.1 Experiment Results 77

5.1.1.1 Experiment Results as Box Plots 78

5.1.1.2 Descriptive Statistics of Experiment Results 82

5.2 Branch Coverage Analysis 83

5.3 Generation Time Analysis 87

5.4 Testing Metrics Analysis . 89

5.5 Statistical Analysis . 93

6 Conclusion And Future Work 97

6.1 Threats to Validity . 97

6.1.1 Threats to construct validity 97

6.1.2 Threats to Internal validity 98

6.1.3 Threats to conclusion validity 99

6.1.4 Threats to external validity 99

6.2 Conclusion . 100

6.3 Difficulties and Obstacles 102

6.3.1 Mastering EV OSUITE 102

6.4 Future Work . 103

6.4.1 Analyzing different Variations of IBEA 103

6.4.2 Analyzing CUT with large number of objectives . . 103

6.4.3 IBEA to cover single branches at a time 104

6.4.4 Contribute to EvoSuite 105

Bibliography 107

Appendices 117

A Thesis External Links 118

B Preliminary Experiment Results 119

B.1 Preliminary Experiment Results 120

B.2 Preliminary Experiment box Plots 121

List of Figures

2.1 IBEA Pseudo Code [52] . 26

2.2 NSGA-II Algorithm Procedure [1] 29

4.1 Example class and test case 63

4.2 Chromosome Structure in WTS 64

4.3 Code Snippet to explain Branch distance 65

4.4 A code Snippet to explain the Branch distance and Ap-

proach level . 67

4.5 Test Suite Crossover . 70

4.6 Test Case Mutation example, the three operations delete,

insert and change are shown [22] 73

5.1 Generated Test Suite Branch Coverage 79

5.2 Generated Test Suite Length 80

5.3 Generated Test Suite Size . 81

5.4 Algorithm Generation Time 81

5.5 Branch Coverage when Number of Branches is between 22

and 70 . 84

5.6 Branch Coverage when Number of Branches is between 71

and 100 . 84

5.7 Branch Coverage when Number of Branches is between

101 and 200 . 85

5.8 Branch Coverage when Number of Branches is between

201 and 300 . 85

5.9 Branch Coverage when Number of Branches is between

301 and 1215 . 86

5.10 Evolution Time to Branch Numbers on full Coverage . . . 87

5.11 Test-suite Size to Target Goals 90

5.12 Test-suite Length to Target Goals 91

5.13 Test-suite Execution Time to Target Goals 92

5.14 Test-suite Mutation Score to Target Goals 93

B.1 Total Execution Time . 121

B.2 Generated Test Suite Coverage 122

B.3 Generated Test Suite Mutation Score 122

B.4 Generated Test Suite Size . 122

B.5 Generated Test Suite Length 123

B.6 Generated Test Suite Covered Goals 123

List of Tables

3.1 Literature Review Summary 58

4.1 Classes to be used in the Empirical Experiment 62

4.2 EvoSuite PARAMETER SETTINGS 69

5.1 Mean Values that summarizes the full Experiment Collected

Results . 79

5.2 Add caption . 82

5.3 Add caption . 83

5.4 Add caption . 83

5.5 Data Summary for Full Goals Coverage 88

5.6 Friedman test of metrics collected 94

5.7 Evolution Time Pair Wise Comparison 95

5.8 Evolved Test-suite Branch Coverage 95

5.9 Evolved Test-suite Length 95

5.10 Evolved Test-suite Execution Time 96

5.11 Evolved Test-suite Size . 96

5.12 Evolved Test-suite Mutation Score 96

B.1 EV OSUITE Experimental Data-set 119

B.2 Preliminary Experiment Result 120

1

Chapter 1

Introduction

Software testing is one of the most important activities in the software

development life cycle; testing activities consume 50% of the total effort

and cost of the whole development effort according to Chartchai et al

[13]. The very early stage of testing any software is unit testing; unit test-

ing can be defined as a software testing method by which the developers

test their individual unit of source code. The unit can be referred a to as a

single component or small piece of code that is under test; nevertheless,

its well known among the developers that the unit is the class under test

(CUT) or a method in a class.

Unit testing is an activity that has been highlighted a lot as a core pro-

cess in Software methodologies like Agile and Extreme Programming;

what adds more importance to unit testing nowadays, is the ability to

integrate them easily in team’s software development process (like De-

vOps) using a lot of integration tools. Nevertheless, the primary key

practice for unit testing is automating it so that it can be executed reg-

ularly or on demand [64].

2 Chapter 1. Introduction

Writing unit tests for a program are considered a tedious task for most

of the developers [7, 54]. Moreover, such an activity became an essential

process in modern software development methodologies such as extreme

programming, Scrum Agile and Kanban Agile in which the delivery of

new software functionalities could occur on a daily basis [7, 28]. Thus,

easing the writing of unit tests and automatically deriving them is one of

the important topics in primary software engineering [45].

Many Software engineering activities can be considered as an opti-

mization problem [27], and unit testing is one of them as we aim to gen-

erate tests that execute the software systemically using fewer resources,

shortest time possible and achieving higher code coverage (like statement

or branch coverage) while detecting the maximum defects existing in the

software [19]. Not only Generating the tests, but also create tests’ oracle

that evaluates the correctness of the system under test (SUT) behavior

during the unit tests execution.

A lot of algorithms have been analyzed in the domain of automating

test case inputs generation. Both Single and Multi Objective Genetic Al-

gorithms were examined and researchers improved those algorithms by

empowering them with hybrid approaches and techniques [43, 62, 40].

Recently, there were limited researches that tried to study new MOEAs.

This Study analyzed IBEA [66] and since IBEA is known for its high com-

putation cost [44], I employed a modified enhanced flavor IBEA named

Modified IBEA [35] and conducted a comparison with the famous NSGA-

II [11].

1.1. Problem Statement 3

This study compared IBEA, Modified IBEA and NSGA-II in terms

of branch coverage (effectiveness), Evolution time (efficiency) and other

non-coverage testing metrics like evolving test-suites that have the mini-

mum execution time and length possible. I found out that NSGA-II and

Modified IBEA achieved higher branch coverage over IBEA. NSGA-II

was the most efficient algorithm and IBEA evolved test suites that have

shortest execution time and smaller in size.

1.1 Problem Statement

With the modern software development methodologies and the expedi-

tious development that it employs, constructing test suites that could ef-

fectively detect defects would slow down the development pace. Conse-

quently, having a tool that could generate those unit tests within a reason-

able amount of time would be a valuable asset for software developers

and would benefit the development process.

Many optimization algorithms have been adopted to generate test in-

puts for the system under test automatically. Moreover, considerable re-

search has adjusted and modified the algorithms for the sake of achiev-

ing better results. Nonetheless, and with the significant contribution of

search-based software testing, I could not find to our best knowledge,

a research that analyses the use of Indicator-Based Evolutionary Algo-

rithms (IBEA). Add to this, I selected IBEA due to its popularity in the

4 Chapter 1. Introduction

Search-based software engineering field as one of the effective Indicator-

based MOEAs. IBEA tries to incorporate practical decision making and

valuable information to decision-makers who are interested in the re-

gions of Pareto Front. This is all occurring in IBEA which accomplishes

that by either maximizing or minimizing some performance indicator.

And thus, IBEA is considered as one of the powerful MOEAs as a col-

lective approach that tries to employ the burden of selection operation in

order to maximize the performance of all individuals in the population

[14].

Many evolutionary algorithms (EA) have been used and examined

in the test generation problem. However, most of them adopted a sin-

gle objective as a criterion of completeness, meaning, they aimed to find

a single test case that achieves a particular target at a time. The main

drawback of this approach is that it assumes that all goals are equally

important, have the same difficulty to be achieved, and are independent

of each other. In reality, none of these assumptions are valid. For exam-

ple, most of the algorithm resources could be spent in trying to cover an

infeasible branch while there are other more feasible branches which are

easier to be covered. To get over those issues, the concept of whole test

suite optimization (WTS) has arisen [18]. Briefly, WTS focuses on gener-

ating a test suite (which is a group of test cases) that achieves a specific

set of goals/objectives. So, instead of generating a test case that covers a

branch at a time, WTS produces a set of test cases that covers a group of

1.1. Problem Statement 5

branches I specify. It was proven that WTS outperforms previous search-

based approaches used in test case generation [20].

WTS tries to generate test-suites that achieve several groups of targets

that belong to the same family collectively, code coverage is as an exam-

ple of such a target; code coverage is of many types, it could be statement,

path, branch or even function. its upon the research preferences to choose

what type of coverage to use in his research. I intend to introduce another

objective to the solutions generated by the WTS approach that is of spe-

cific interest to the software engineers working on an industrial project.

This study will use the test case execution time as the second objective

and hence the MOEA will be implied to generate test-suites that achieve

the higher branch coverage with less execution time possible. Thus, I in-

tend to employ the Indicator-Based Evolutionary Algorithm (IBEA) [66]

as a multi objective-based algorithm for optimizing generated test suites

to achieve high branch coverage without causing an increase in test cases

execution time.

Instead of using Pareto dominance to evaluate the quality of solu-

tions, IBEA uses an indicator function (typically hypervolume but other

indicator functions can be used). Zitzler and Künzli [66] have shown on

different benchmarks that IBEA has performed better than the two pop-

ular algorithms NSGA-II and SPEA2, concerning different performance

measures. IBEA was also proven to have an advantage over other al-

gorithms in many-objective problems, i.e., problems with four or more

objectives [52], [41].

6 Chapter 1. Introduction

1.2 Research Questions

In this thesis, I intend to use white-box testing techniques to analyze a

program source code, and automatically generate feasible test cases with

a proper set of assertions that examine the System Under Test (SUT) and

checks its behavior. The test cases correctness and feasibility are mea-

sured by specific metrics, such as code coverage, number of mutations re-

vealed, execution time and resource usage. For a test-case to be valuable

for the developer, it should at least achieve branch coverage with mini-

mal time to execute; developers also favour test cases that are of smaller

size, because they would be easier to read, maintain. Moreover, writing

test oracles for smaller test cases are highly preferred over larger complex

ones.

To improve the performance of IBEA and reduce the computation

time, I will be examining a modified flavour of the general IBEA. Our

main objective is to examine the basic IBEA and analyze how it would

perform in the domain of test case generation. The Basic algorithm will be

compared to one of the MOEAs algorithms such as NSGA-II. Then I will

try to modify IBEA and analyze its results again. Previous studies that at-

tempted to improve IBEA are not too many, one study proposed a simple

and fast hyper-volume indicator-based MOEA (FV-MOEA), which was

1.2. Research Questions 7

suggested to quickly update the exact HV contributions of different so-

lutions by deleting the irrelevant ones [34], hence reducing IBEA’s com-

putation time. A second study presented a new algorithm called Mod-

ified Indicator-based Evolutionary Algorithm (mIBEA) which improves

the general IBEA by embedding an additional Pareto-dominance based

component for selection and thus tries to achieve diversity of the evolved

solutions set [35].

RQ1: What is the branch coverage of IBEA and Modified IBEA

when being compared to other Multi-Objective Algorithms (MOAs)

in generating test cases?

The first objective that any developer has in mind when writing a test

suite is to construct a set of test cases that achieves the highest coverage

possible for the class under test. In order to accomplish that, one needs

to provide test cases with different test inputs that cover every feasible

condition in his code.

The most commonly used coverage metric in Software-based search

testing is branch coverage. A software application consists of conditional

statements such as if conditions and loops which are guarded by logi-

cal predicates. Branch coverage requires that each predicate should be

evaluated to both true and false. A branch that is not reachable or has a

predicate that will never evaluate to both true and false is called an infea-

sible branch. Thus, an optimal test suit would be the one that can cover

all feasible branches.

8 Chapter 1. Introduction

One way to compare the algorithms is to check which one produces

test suites that pull off higher branch coverage within a specified search

budget. So, our first question aims to measure the effectiveness of the

algorithms by figuring out the branch coverage score of IBEA algorithms

and compare them with other algorithms in the literature.

RQ2: To what extent is IBEA efficient when being compared to other

MOAs in generating test cases?

One crucial factor that should be taken into consideration while gen-

erating the test suites is time. Since I have described how software de-

velopment paradigms enforce rapid developments and delivery, it’s im-

portant that the algorithms should be capable of generating test suite in

a reasonable period for the system under test.

Execution time is defined as the time taken for the software test suite

generation process [44]. Execution time will be affected by some factors

that are related to the nature of the system under test, like dependency

between classes, size of classes (i.e. the number of code lines), number

of branches to cover as well as to the machine resources on which the

generation will be held.

This study work towards optimizing test cases to attain high coverage

test suites with minimal execution time. In other words, answering this

question will reveal how efficient are IBEA and modified versions of the

IBEA algorithm in such an optimization problem where I would need to

1.2. Research Questions 9

get the highest coverage possible with minimal time. The lower the exe-

cution time the more cost-effective would the algorithm be.

RQ3: What is the size of the test suite generated by IBEA when

being compared to other MOAs in generating test cases?

Automating the process of generating test Suites is an excellent tool

and makes life easier for developers. Yet, the developer has to evaluate

the test cases manually and examine if they meet the needs and are logi-

cally correct. As a result and for the tools to be usable by practitioners, its

generated test cases should be of small size otherwise adding test oracles

to the generated test cases would be a tedious task.

Having said that, such an optimization problem to minimize test suite

size and preserve branch coverage must be shed light on. The relation of

test cases size and its coverage percentage is correlative; since in most

cases, larger test cases cover more branches. However, that might not be

the situation in test Case generation tools where the code statements are

being injected into a test case randomly and only then can be evaluated

against the subject goals.

The last question of our test cases aims to evaluate what we call the

test oracle cost. Test Oracles are used to assess the correctness of the

observed behavior upon executing the test suite [24]. A usual scenario

during writing tests for a software application is therefore test inputs are

being generated automatically and developers add the test oracles man-

ually. Hence, for a test case to be considered valuable, it should achieve

10 Chapter 1. Introduction

high branch coverage and be small in size, since more minor test cases

are more comfortable with producing assertions for.

1.3 Research Contribution

This thesis would be the first to use basic IBEA in test suite generation

that aims to achieve a group of predetermined goals all together at a time.

Due to the fact that IBEA has some calculation cost, lots of researchers

believed that it wouldn’t be useful in such problems where many objec-

tives have to be achieved together [43]. However, I aim to apply a mod-

ified versions of IBEA and employ it in a computationally light manner

and investigate whether this approach can outperform or at least equally

compete with other used algorithms.

1.3.1 Enhancing EV OSUITE Tool with IBEA algorithms

I plan to contribute to EV OSUITE tool by providing the implementa-

tions of evolutionary algorithms that I am going to examine as part of

this study. EV OSUITE is a tool that automatically generates test suite

with their assertions for classes that are written in any language com-

piled to Java Virtual machine byte-code, it targets code coverage criteria

such as branch or statement coverage. Moreover, EV OSUITE helps de-

velopers in determining whether the generated test suites are valuable

and correct enough to be dependent on by providing a small group of

assertion statements that validates SUT behavior.

1.3. Research Contribution 11

As EV OSUITE is designed to be extensible, then the main advan-

tage of using this tool is that it saves us from investing efforts and time

in performing byte-code instrumentation, as well as to handle static and

dynamic analysis on the source code and develop the needed infrastruc-

ture to generate test cases based on the previous activities. EV OSUITE

lacks any IBEA implementations. Hence, I will be the first among those

who contributed to EV OSUITE with the primary and adjusted IBEA

algorithm.

In addition to developing the algorithms, I found that the tool was

not ready to have the test-suite execution time and length as an Objective

functions, so I implemented the missing objective functions, integrated

them with the tool and used them in our study. Add to this, some metrics

of test-cases and suites are not natively measured in EV OSUITE so I

added the missing code to measure expose those metrics to be reported

properly as a other EV OSUITE metrics.

1.3.2 Validating Contribution on well Known set of Classes

After implementing the algorithms and integrating them withEV OSUITE,

they will be examined against a well know set of open source libraries

and applications. I used the same data-set used by most of the researches

conducted onEV OSUITE. Mainly I will be using a subset of classes that

were used by Fraser and Arcuri. [16]. In this study, I will select a group of

diverse classes from different software applications. Some of which are

12 Chapter 1. Introduction

open source projects developed by Google and Apache Software Foun-

dation.

To avoid having biased results, I will bear in mind the domain of

classes during the result analysis and discussions; meaning, I will dif-

ferentiate between classes that have many String or text operations from

those who are numerical or have a lot of array processing. The nature

of the class really affects the test case generation, or to be more precise,

the type of branches inside a class under test has a direct impact, because

different branch types have various means of condition resolution, and

as a result, the branch coverage is affected. For example, String-based

conditions are harder to satisfy when being compared to integer-based

conditions [55].

1.3.3 Addressing the Problem Through Many objectives

Unlike most research that has been conducted in this area, I intend to use

more than one criterion in the evaluation function of the evolutionary

algorithms. Most studies took branch coverage as the main criterion and

the size of the generated test suite as the secondary criterion, so if two test

suites have been evaluated to be of the same value to the system under

test, the one with a smaller size will be selected. This study will consider

optimizing the branch coverage achieved by a test-suite to its execution

time and size.

In this scope we define the optimization objectives as:

1.3. Research Contribution 13

A How many branches the test case covers.

B Test case Execution time

C Test case length i.e size

1.3.4 Comparison Between IBEA, mIBEA and NSGA-II

Search based software engineering fields have been used in many soft-

ware engineering aspects. Moreover, a lot of algorithms have been har-

nessed in search-based software testing. Whenever a new algorithm was

employed or a new approach was examined, a comparison is always

held with previous algorithms or strategies. Arcuri et al. compared their

whole test suite generation with single target approach, even more, the

WTS generation was also compared to Random generation as in [55]

I plan to analyze the behavior of IBEA algorithms and check their

performance in the field of test-cases generation. Moreover, I plan to use

a modified version of basic IBEA algorithm and examine if it can suit

the test generation problem. Add to this; a generic comparison will be

conducted to compare IBEA with other MOEAs, specifically the NSGA-

II.

The algorithms employed in this study will compared to each other

using the following effectiveness metrics,

• Test case characteristics

– Achieved branch coverage

14 Chapter 1. Introduction

– Test case execution

– Test case size

• Evolution time of an Algorithm

1.4 Research Overview

The rest of this thesis is divided into the following:

• Background: A description of the theory behind this study and the

tools used. Meta-heuristic optimization is explained in the context

of this thesis study describing non-dominated solutions and their

relation to the solutions that can be provided for the decision mak-

ers.

• Related Work: Intensive literature review investigating the studies

which focus on test suite generation especially those studies that

used the evolutionary algorithms.

• Research Methodology And Experiment Setup: Describing the dif-

ferent data set used in this study in addition to the setup used. This

includes the algorithms configuration.

• Experiments Results and Analysis: I will present the results in this

section taking into consideration the domain in which the classes

under test belongs.

1.5. Research Activities 15

• Conclusion: summarizing the results of this study while present-

ing the threats to validity. Future work is suggested in this chapter

based on this study results.

1.5 Research Activities

I will collect different classes from different domains and application to

ensure the diversity and emit any biasing probabilities. The experiment

will be conducted on the same machine/environment for each algorithm

and under same circumstances. Moreover, The following activities are

conducted:

• Detailed EV OSUITE experiment: I will extend EV OSUITE and

implement the algorithms from scratch and only then start our ex-

periment. Moreover, I contributed to the tool by adding two objec-

tive functions.

• Algorithms Comparison: I will be using our newly added IBEA,

modified IBEA and NSGA-II algorithm that was developed inside

EV OSUITE and do the comparison.

• Algorithm minimal run time: I will be taking into consideration

the execution time of the subject algorithms and check which one

gives the best result within a certain time budget.

16

Chapter 2

Background

Test case generation aims to ease the software development process where

developers should right quality tests for their code. Several attributes are

taken into consideration when adopting such a tool, such as the correct-

ness of a test case, execution time and code coverage (either branch or

statement). Developers tend to use tools that generate small test cases

that achievers higher code coverage with a reasonable amount of time.

It’s worth noting here, that coders favor small test cases or suites because

it needs less effort in writing test oracles comparing to a larger one.

Having said that, test case generation involves competing objectives

such as test case length, the execution time of a test case, statement or

branch coverage and resource consumption. For example, the number

of statements could compete with the statement coverage, since cover-

ing a specific code in SUT requires higher test scenarios. In addition, the

number of statements could compete with memory consumption and the

execution time; the longer is the test-case the higher would be the execu-

tion time and resource usage. Moreover, some of those objectives could

2.1. Evolutionary Algorithm 17

also compete with the configurations set of the generating algorithms, for

example, the longer the search budget, the better is the test case coverage.

This chapter presents the theoretical background in detail behind Evo-

lutionary Algorithms, Single Objective Algorithms, multi-objective algo-

rithms, and shed light on the algorithms used for this research. Also, I

will shed light and analyze the hypervolume indicator which is used in

this research as well as to detailed explanation about the EV OSUITE

tool.

2.1 Evolutionary Algorithm

Evolutionary Algorithms use a kind of meta-heuristic search technique

inspired by the way nature evolves species using a natural selection of

the fittest individuals to solve an optimization problem. In our case, a

Genetic Algorithm is used to convert the task of test case generation into

an optimal problem; this activity can be referred to as Evolutionary Test-

ing. Evolutionary algorithms work with a set of solutions (populations)

so that they can provide a set of satisfactory solutions. They also do not

use any gradient information but on the contrary, they are based on the

random determination.

In Principle, Evolutionary algorithms are family of computational al-

gorithms that are inspired by evolution and decodes a solution of a par-

ticular problem into a data structure that groups a certain number of

18 Chapter 2. Background

genes called chromosome and then perform manipulation on those chro-

mosomes to preserve critical information. So I consider the space of pos-

sible chromosomes as a solution space to search in, and apply the EA

approach to search for the right solution. Evolutionary algorithms are

usually seen as an objective optimizer, yet it’s well known that they ap-

plied to a wide range of problems [62]. EA is commonly used to gen-

erate high-quality solutions for optimization problems and search prob-

lems and Genetic Algorithms (GA) are one of the most used among the

evolutionary-based algorithms.

2.1.1 General Design of Genetic Algorithm

Genetic Algorithm (GA) is one of the evolutionary algorithm family. GA

has emerged as a practical, robust optimization technique and search

method [56]. GA usually starts by generating a random population of

chromosomes among the search space; an evaluation is held over the

chromosomes via a specific fitness function deduced from the problem’s

environment. Then, The probabilities of reproductions are determined;

the chromosomes which represent a better solution are given more chances

to reproduce comparing to those of imperfect solutions. Production of the

new off-springs takes place via Genetic operations that will be discussed

in section 2.1.2.

In John Holland approach[29], one parent is selected using the selec-

tion operator and based on its fitness value, while if a crossover is to be

2.1. Evolutionary Algorithm 19

performed then the other parent is chosen randomly [47]. However, the

algorithm can be summarized as illustrated in the following steps,

• Step 1: Randomly initialize populations P

• Step 2: Determine fitness of population

• Step 3: Until convergence or a termination condition is satisfied re-

peat:

– Step 4: Select parents from population

– Step 5: Generate new population and perform crossover

– Step 6: Perform mutation on new population

– Step 7: Calculatefitness for new population

• Step 8: return solution

2.1.2 Genetic Operators

One main step in the GA is the production of new population and per-

forming some genetic operations in a trial of getting offspring that are

better than the producing parents. Production of successive offspring are

performed using the following operators[56],

1. Selection Operator

Since GA will be producing new generations, then there is a possi-

bility that the size of current population will be twice the size of the

20 Chapter 2. Background

initial population; thus, I need an operator to select individuals in

order to maintain the proper population size and offer preferences

to the chromosomes with better fitness values and enable them to

pass their genes to offspring (successive generations)

2. Crossover Operator

Crossover operator is performed over the selection In which two

individuals (parents) are selected using selection operator, the out-

put of this operator is a couple of chromosomes that inherits the

parents’ genes. The operation starts by determining the crossover

points and next those genes at these points are manipulated either

by swapping locations, or flipping bits, or reordering the sequence

to create new offspring. Crossover probability is used to determine

how often will be crossover performed. If there is no crossover, off-

spring is exact copy of parents. According to Räihä in [46], there is

a relation between crossover and fitness value of the offsprings; this

can be explained by applying higher crossover rates in order to get

better off-springs from parents. However, this is can’t be guaran-

teed in the evolutionary computation because crossover is made in

hope that new chromosomes will have the right parts of old chro-

mosomes, and maybe the offspring would be better.

3. Mutation Operator

by which I try to enhance the solution set with a diverse population

2.2. Single-objective Evolutionary Algorithms 21

by manipulating random genes in offspring. This could be accom-

plished by flipping the value between 0 and 1 as in the binary chro-

mosome or by swapping the location of two numbers in an integer

chromosome. However, before performing mutation, a validation

process should take place in order to make sure that the mutated

chromosome is still valid [46]. Since validating the chromosome

after mutation could consume computation resources and increase

the algorithm execution time, then the rate of the mutation process

(i.e. mutation probability) is set to a minimum value to avoid such

a computational overhead. Yet, the mutation probability should be

greater than zero to make sure I achieve diversity among offspring

and prevent GA from sticking into local optima. Moreover, the mu-

tation rate should not occur very often. Otherwise GA will in fact

change to random search.[56]

2.2 Single-objective Evolutionary Algorithms

A single objective or parameter optimization problem can be defined as

the procedure of optimizing a set of variables to minimize or maximize

a particular objective. This kind of problems might be viewed as a black

box with a group of control knobs representing different parameters and

need to be adjusted to achieve some goal. Thus, the only output of this

black box is a single value that yielded by an evaluation function which

indicates how well a specific setting of the parameters (knobs) solves the

22 Chapter 2. Background

optimization function. So the aim would be to find the best set of those

parameters that better optimizes the output.

In search-based software testing (SBSE), Genetic algorithms are used

to search for optimal test parameters or test inputs combinations that

meet a predefined test criterion and hence one can say that testing prob-

lem is considered as a search problem. For example. In our study, this

could be mapped to finding out a set of test cases that maximizes the

branch coverage or minimizes the execution time.

In a single objective scheme, GA algorithms will keep developing gen-

erations of test cases and measure how good are they in achieving a cer-

tain objective using a fitness function; some of the individual coverage

goals that are used in SBSE are code coverage of white box testing which

finds the areas of the program not exercised by a set of test cases such

as (1) Branch Coverage (2) Line Coverage (3) Weak Mutation testing. In

the next section, I will be explaining in detail the branch coverage used

in this study.

2.3 Multi-objective Evolutionary Algorithms

Evolutionary multi-objective optimization (EMO) is one of the most ac-

tive research areas in the field of evolutionary computation as Many real-

world decision-making problems have several objectives to achieves; the

most recent EMO algorithms share the following three common features

2.3. Multi-objective Evolutionary Algorithms 23

among them: (1)Pareto ranking, (2) diversity preserving, (3) and elitism

[32]

In the field of software testing, a practitioner would like (for example)

to generate test cases that maximize fault detection, different types of

code coverage and minimize execution costs. Genetic algorithms also

present advantages in multi-objective inverse problems, because they can

determine reliably the Pareto frontier in one single simulation run [10].

The main goal of the single-objective GA algorithm is to find the best

solution that can actively minimize or maximize a particular objective

function by lumping all objectives into one [51]. Such an algorithm can

be used to give practitioners an indication or a way of exploration to

the problem domain but they can never offer a set of alternative solu-

tions that trade objectives against each other. However, in multi-objective

problems where there are several competing objectives, there is no sin-

gle optimal solution; indeed, there are several conflicting objectives that

might interact and yields a set of compromising solutions known as the

trade-off,non dominated, non-inferior or Pareto-optimal solutions [51].

Multi-objective algorithms provide three significant improvements to the

single one,

• Identifying a wider range of alternative solutions

• Modeling real-world problem in a more realistic way

• Assign more appropriate roles to those who are part of the decision-

making process like modelers and decision-makers.

24 Chapter 2. Background

The main goal of MOAs is to find a set of Pareto-optimal solutions

called the Pareto Front (PF). This PF will eventually contain a set of so-

lutions that do not dominate each other in the search space and repre-

sent the trade-off between different objectives; that set is named non −

dominated solutions[35]. Having said that, a solution x(1) is said to be

dominating x(2) if x(1) is not worse than x(2) in all objectives and x(1) is

better than x(2) in one or more objectives [37]. A fitness criterion (fitness

function) for each objective is then used to measure how much the objec-

tive is good, and this value could be maximized or minimized according

to the problem domain.

2.3.1 Indicator based Evolutionary Algorithm

IBEA [66] is one of multi-objective optimization algorithm that is a pref-

erence based evolutionary algorithm. The main advantage of the algo-

rithm is that it has the capability to incorporate the preference of user

and include that in the search process. The user preference which will be

referred to as an indicator is being formed at the beginning of the search

process and next will be used in the selection process of next individuals

as the solutions evolves. IBEA solves various Multi-Objective Optimiza-

tions Problems (MOPs) by applying three main search components (1)

fitness assignment, (2) diversity preservation and (3) elitism. The main

contribution of IBEA is that it provides a general framework for indica-

tor based Multiple Objective Evolutionary Algorithms (MOEAs), mean-

ing, several quality indicators could be used and integrated within IBEA

2.3. Multi-objective Evolutionary Algorithms 25

main flow to solve a MOPs in any domain.

Figure 2.1 illustrates The selection strategy in IBEA is a binary tourna-

ment between randomly chosen individuals. Whereas, the replacement

scheme consists of deleting, one-by-one, the worst individuals, as well

as to updating the fitness values of the remaining solutions each time

there is a deletion; this step is iterated until the needed population size

is achieved. In addition to that, an archive stores solutions mapping to

potentially non-dominated solutions in order not lose them during the

random searching process.

2.3.2 A Modified Indicator-based Evolutionary Algorithm

(mIBEA)

This newly proposed algorithm was proposed by Li et al [35], to solve

the problem of solutions distributions of IBEA [66] which attempts to

guide the solution to the best and true PF using the fitness indicators it

associates with the generated solutions. According to the same authors

[35], IBEA is found to be trapped in specific areas of the search space

and suffers from lack of diversity. The new algorithm mIBEA was just

empowered by additional Pareto-dominance component of selection, this

component is the non-dominated sorting of NSGA-II [11].

mIBEA is a modification to IBEA in which it eliminates the non-dominated

solutions at each generation by embedding the dominance-based sorting

26 Chapter 2. Background

FIGURE 2.1: IBEA Pseudo Code [52]

2.3. Multi-objective Evolutionary Algorithms 27

of NSGA-II. The embedding of the non-dominance sorting of NSGA-II is

illustrated in the following mIBEA algorithm Pseudo code .

Algorithm: mIBEA Pseudo Code [35]
Input : α(populationsize);
N(Maximumnumberofgenerations);
κ(fitnessscalingfactor);
Output: A(Paretosetapproximation)

1 Step1 : Initialize population
2 Step2.1:Use the fast non-dominated sorting of NSGA-II to get

non-dominated solutions in P and use the non-dominated
solutions as the new P.

1. rank the solutions in P: Ranking rankedP = new Ranking(P);

2. get the non-dominated solutions: P = rankedP.getSubfront(0);

Step2.2: Fitness Assignment of IBEA as in Fig 2.1
Steps 3-6 : are the same as the original IBEA in Fig 2.1

2.3.3 Non-dominated Sorting Genetic Algorithm II

Non-dominated Sorting Genetic Algorithm II which is abbreviated by

(NSGA-II) is a Multi-Objective Optimization algorithm that belongs to

the family of Genetic Algorithms from the field of Evolutionary Compu-

tation, and in the taxonomy of Evolutionary Algorithms it’s one of the

MOEAs. There are two versions of the algorithm, the classical NSGA

and the updated form NSGA-II which tries to improve the adaptive fit of

a population of candidate solutions to a Pareto front restricted by several

objective functions [8].

28 Chapter 2. Background

NSGA-II is similar to any Genetic algorithm in terms of generating

population and genetic operations. Its strategy depends on sorting the

population into a hierarchy of sub-populations (called fronts) based on

the ordering of Pareto dominance; the similarity between individuals in

the same front is calculated on the Pareto front and the resulting groups

and measures are being used to select a diverse front of non-dominated

solutions. NSGA-II solved predecessor MOEAs drawbacks and limita-

tions, the first was the computational complexity which leads to an in-

crease in resources used during execution, NSAG-II reduced the com-

plexity fromO(mN (3)) to O(mN (2))[11]. The second thing is the lack of

elitism, NSGA-II has introduced the elitism which improved the GA per-

formance and helped to preserve good solution. The final point is the

sharing parameter used to achieve variations in found solutions; NSGA-

II has abandoned this and introduced a selection operator to select the

best chromosome from parents/children archive referring to its fitness

and spread values. NSGA-II was found to add diversity solutions ob-

tained in the Pareto-front outperformed the previous MOEAs: Pareto-

archived evolution strategy (PAES) and strength Pareto EA (SPEA) [11]

The multi-objective evaluation of each solution in NSGA-II is based

on Pareto ranking and a crowding measure. Figure 2.2 illustrated NSGA-

II procedure which can be summarized in the following four steps [1]

[11],

• Step 1: Rt population of the size 2N is randomly generated, this

2.3. Multi-objective Evolutionary Algorithms 29

FIGURE 2.2: NSGA-II Algorithm Procedure [1]

population includes parent population Pt and offspring Qt popu-

lation, each of size N . Genetic Operators including Binary tourna-

ment selection, crossover and mutation are applied to produce the

offspring Qt. Then the population Rt are assigned the fitness value

and sorted according to the non-domination level where minimiz-

ing the fitness value is needed. The result of this sorting procedure

will yield fronts Fi where i = 1, 2, 3,

• Step 2: a new population P(t+1) is be being constructed from the best

F ranked and passed to the next step. If the size of F1 is less than

N , then the population includes chromosomes from F2, 3, ..., and so

on. This procedure is continued until no more sets can be selected

• Step 3: if the size of F1 is greater than N then to choose exactly N,

30 Chapter 2. Background

the chromosomes are being sorted using the crowding distance ap-

proach in descending order; this is done by measuring the density

of the solution from its neighbors and then comparing values be-

tween all solutions. Once sorting is done and selected individuals

are and pass the selected to the next iteration, then the rest of the

solutions in F2, 3, ... will be dropped.

• Step 4: Operators including crowded tournament selection, crossover

and mutation will be applied to get a new population Q(t− 1) form

P(t+ 1). In each iteration, a counter i is increased by 1

2.4 EVOSUITE

EV OSUITE is a tool that was constructed in 2010 by Fraser and Ar-

curi as an output of a research project and is often referred to as one of

the main reference tools for search-based software testing [26]. It auto-

matically generates unit tests for Java software using Evolutionary Algo-

rithms. It is well developed sophisticated tool that can be called via com-

mand line or can be integrated as a plugin within Maven, Eclipse and

IntelliJ; it has been used on more than a hundred of open source projects

and found to be effective in revealing bug [22].

EV OSUITE mainly operates on the byte-code level of and collects

all needed information from the classes under test (CUT) using Java re-

flection. thus, it does not require the source code of the CUT and it could

be used over any programming language that compiles to java byte-code

2.4. EVOSUITE 31

such as Scala. EV OSUITE for now can only cover code that has no de-

pendencies and assumes that CUT is deterministic, meaning, if the gen-

erated unit test was executed ten times, then it will yield the same result

[22]. Having said that, its worth noting here that such a tool can’t be used

in the Test Driven Development (TDD) schemes where automated tests

are being written before developing the functional code in small efficient

iterations [33, 6]

2.4.1 Unit Testing and Class Under Test

Unit testing is one level of software testing where a single component or

unit is being tested. The main goal of unit testing is to examine that a par-

ticular component meets the required needs and performs as designed

[36]. A unit is considered the smallest piece of the software product that

can be tested and in most of the cases, it has several inputs and a single

output. A test suite is a group of unit tests for a CUT, and each test-case

represents an absolute test scenario. The CUT is formed from a set of

methods; each one of them contains a list of statements. Statement types

can vary and they could be either a constructor statement, a conditional

statement (e.g. if), a method call or a regular statement. A unit test then

can be defined as a function that represents a test scenario and when exe-

cuted, it can call some methods in the CUT and checks that the observed

behavior matches the expected one. Moreover, Unit testing is considered

another type of code documentation, it can help developers understand

the behavior of the software [59].

32 Chapter 2. Background

The following code snippet shows a sample of a test case that was

generated during running the experiment of this thesis. This is not the

full test-case generated its just a sample for the sake of demonstration

purposes.

2.4.2 Types of Code Coverage

There are two main types of testing techniques, black and white box test-

ing. Black box testing is always referred to as Functional testing, where

the writing of test cases depends on the requirements and design docu-

ments. The second type is white box testing and its referred to as Struc-

tural testing, where tests are written based on the implementation since

all internal structures of program under test is exposed and available for

testers [36].

Here are the mostly used code coverage criteria in software testing

literature [12, 30, 63],

• Line (Statement) Coverage: number of statement exercised in CUT

when a test is executed

• Function Coverage: number of functions invoked in CUT when a

test is executed

• Edge Coverage: number of edges in the control flow graph of CUT

that were visited when a test is executed

2.4. EVOSUITE 33

• Branch coverage: also called DD-Path and is a subset of Edge Cov-

erage which is number of times each branch is being evaluated in

CUT.

• Condition coverage: sometimes its called Predicate coverage, and it

refers to number of Boolean sub conditions that were evaluated to

both True and False.

• Path Coverage: number of times every path in CUT control graph

is being executed. number of paths in CUT maybe exponentially

related to number of code lines in CUT

There are many other types of coverage like loop, block and state cov-

erage, but we defined the most relative once to our study and explained

in detail those that are supported in EV OSUITE. This Study will de-

pend on branch coverage, since each covering all branches implies cov-

ering all possible scenarios [48], Moreover, branch along with path cov-

erage are found to be the best code coverage criteria when being em-

ployed in generating effective test suites [31]. Its worth noting here that

the branch coverage checks and deals with the full condition statement

unlike the condition coverage which checks every sub condition in the

main condition statement. The fitness function that is built to evaluate

the branch coverage of test-suites is being discussed in details in section

4.2.2.3.

@RunWith(EvoRunner.class) @EvoRunnerParameters(

34 Chapter 2. Background

mockJVMNonDeterminism = true,

useVFS = true, useVNET = true, resetStaticState = true,

separateClassLoader = true, useJEE = true)

public class ComboLeg_ESTest extends ComboLeg_ESTest_scaffolding {

@Test(timeout = 4000)

public void test0() throws Throwable {

ComboLeg comboLeg0 = new ComboLeg();

ComboLeg comboLeg1 = new ComboLeg();

assertTrue(comboLeg1.equals((Object)comboLeg0));

comboLeg0.m_designatedLocation = "k;Py5!PA8DyJo9r";

boolean boolean0 = comboLeg0.equals(comboLeg1);

assertFalse(comboLeg1.equals((Object)comboLeg0));

assertFalse(boolean0);

}

@Test(timeout = 4000)

public void test1() throws Throwable {

ComboLeg comboLeg0 = new ComboLeg();

ComboLeg comboLeg1 = new ComboLeg();

assertTrue(comboLeg1.equals((Object)comboLeg0));

comboLeg1.m_exchange = null;

comboLeg1.m_exchange = "k;Py5!PA8DyJo9r";

boolean boolean0 = comboLeg0.equals(comboLeg1);

assertFalse(comboLeg1.equals((Object)comboLeg0));

assertFalse(boolean0);

2.4. EVOSUITE 35

}

@Test(timeout = 4000)

public void test2() throws Throwable {

ComboLeg comboLeg0 = new ComboLeg();

ComboLeg comboLeg1 = new ComboLeg();

boolean boolean0 = comboLeg0.equals(comboLeg1);

assertEquals(0, comboLeg1.m_conId);

assertEquals(0, comboLeg1.m_shortSaleSlot);

assertEquals(0, comboLeg1.m_ratio);

assertEquals(0, comboLeg1.m_openClose);

assertTrue(boolean0);

}

@Test(timeout = 4000)

public void test6() throws Throwable {

ComboLeg comboLeg0 = new ComboLeg(1212, 0,

",S4jnGwcr4kB5", ",S4jnGwcr4kB5", 0, 0, "");

ComboLeg comboLeg1 = new ComboLeg();

boolean boolean0 = comboLeg0.equals(comboLeg1);

assertEquals(0, comboLeg0.m_shortSaleSlot);

assertFalse(boolean0);

assertEquals(0, comboLeg0.m_openClose);

assertEquals(0, comboLeg0.m_ratio);

assertEquals(1212, comboLeg0.m_conId);

}

}

36 Chapter 2. Background

2.4.3 Whole Test Suite Generation

Before the use of Multi-Objective Evolutionary testing in Search-Based

Software Testing, the common approach in the literature was to gener-

ate a test case for each objective/goal at a time and then to recombine

them in a test suite. The idea of Whole Test Suite (WTS) Optimization has

been first proposed by Fraser and Arcuri [22] which was implemented in

EV OSUITE tool [20] as being stated in Section 3.2. WTS approach tends

to produce a set of test-suites that covers all testing goals at the same time

instead of deriving test cases to cover a certain objective at a time. The

idea of WTS was brought to solve two main issues of the single test case

approach:

1. Difficult targets: target varies in the complexity level of being cov-

ered. Thus, the single approach could waste a significant amount

of the search budget for just trying to achieve a single test goal.

2. Infeasible Targets: some targets are infeasible to cover, and in prac-

tice, they could not be covered at all and if our approach were not

design to eliminate such a targets then the search budget would be

wasted and even if the approach generated a test case for infeasible

target, the would not be valuable to the software engineer.

WTS approach which was first proposed by Fraser[18], starts with an

initial population of test suites that were randomly constructed. Next, it

uses GA to optimize the generated populations towards stratifying cer-

tain criteria, while using the test suite size a secondary testing objective.

2.4. EVOSUITE 37

Finally, the best resulting test suite is being minimized using the follow-

ing algorithm proposed by [2] which tries to eliminate one statement at a

time until the remaining statements contribute to the testing goal. The

main advantage of this minimization process is the reduction of both

numbers of test cases as well as to their length.

2.4.4 Problem Representation

The first step to applying a search problem in GA to an engineering prob-

lem is to define the representation of the valid. In this study I use the

same representation as [22] in which they defined the valid solutions for

the testing problem as testsuite referred to as T of test cases ti. Given

that |T | = n I will be having T = {t1, t2, ...Tn}. In a unit testing scope, a

unit test t is a program that executes the CUT. Thus a test case requires to

be developed in a programming language (in our case Java) and allows

research to encode solutions and optimize them to solve the problem, A

test case is defined as a sequence of statements t = s{1, s2, ..., sn} of length

l [58]. The length of the test suite is defined as the sum of all its test-cases

length i.e. length(T) =
∑

tεT lt

To guide the selection of parents for the sake of producing off-springs,

I use a fitness function that evaluates the set of solutions. If two test

suites have the same fitness value, then the selection mechanism rewards

the test suite with fewer statements, i.e., the shorter one as it would be

simpler to write test oracles for small test cases rather than bigger ones.

In this study, we focus on the branch coverage as a test criterion, and our

38 Chapter 2. Background

optimal solution To would be the solution that covers all feasible branches

and methods of CUT, has the minimal number of test statements and

has the faster execution time. All this information along with the genetic

operators used in EV OSUITE will be discussed in chapter 4 .

39

Chapter 3

Related Work

Testing software under development and ensuring quality gets more com-

plicated as the software evolves. Moreover, the sooner I find the bugs

the lower will be the cost and impact on the software. It’s been known

that the main objective of software testing is finding defects; however,

one primary purpose is to secure defect prevention. Defect prevention

techniques can be achieved by writing test cases to ensure that the cur-

rent system meets the requirements specified, responds appropriately to

the given input and performs its operation within an acceptable period

of time. These test cases can be written at many levels, the first would

be functions and classes and that’s usually called unit testing and it can

be extended to modules level. The second is to write tests to examine

the system using its Application Program Interface (APIs) and that in-

cludes Smoke, Regression and Stress testing. This study will focus on

unit test generation although the EV OSUITE tool used in the experi-

ment of this study can be assigned to generating tests on the API level as

experimented by Arcuri in [5]

40 Chapter 3. Related Work

Search-Based Software Testing (SBST) is the field where I apply opti-

mization algorithms to problems in software testing; test case and test

oracle generations are among the topics which have been invested in

during the past two years. Single objective algorithms have been em-

ployed firstly in generating test cases, and they aim to find a test case

that achieves a single objective. Many tools have been developed based

on a single target strategy such as Test-Gen [15] and Quest [9].

In this chapter, I will illustrate the previous studies thoroughly in the

domain of automatic test generation. I will mainly shed light on the stud-

ies which adopted a single-objective algorithm to automate the genera-

tion of test cases. Moving on, I will consider reviewing studies that uti-

lized Multi Objectives evolutionary algorithms, and last but not least,

how our research is distinct from other studies. Finally, the literature will

be discussing IBEA in the literature review and how was it adjusted to

overcome its limitations.

3.1 Single Structural Target Approach

Tonella [58] used the genetic algorithm to automatically generating a unit

testing-cases for java objects in generic usage scenarios. His main objec-

tive was to achieve a full branch coverage for the class under test. His

result showed that GA is effective when being applied in such an opti-

mization problem, and the generation time was reasonable. All of the

previous work was implemented in a research prototype named eToc

3.1. Single Structural Target Approach 41

((evolutionary Testing of classes). Moreover, his tool was designed to

add an assertion to validate the test-cases (test oracles). The test-cases

are being generated and executed in the form used by the JUnit testing

framework. In addition to the GA, Tonella used the greedy algorithm

to select the smallest number of test cases that best achieves the target

branch coverage and add them to a test suite. His results were both vali-

dated by checking the coverage achieved by his test cases and the number

of defects they can detect. In this study, they used the mutation testing to

insert a group of defects in the CUT and verify that it can be captured by

executing the test suites.

McMin and HolCombe Study [40] addressed the challenges that could

be faced by evolutionary algorithms when used in testing scope. They

stated that the search algorithm might not achieve good code coverage

in terms of statements or branches because they do not take into account

the dependencies between objects when generating input for white box

testing. Their procedure was to combine the Chaining technique to guide

algorithms for achieving better results. The Chaining search is an alter-

native test data generation technique and based on a local search method

known as the “alternating variable method”. Chaining search uses the

branch distance calculation of a particular branch from an individual

node in order to change the flow of control. Generally, the evolution-

ary algorithm is used to generate test data initially and the chaining ap-

proach is used for targeting complex branches. The main fitness function

used in this study for evaluating the individuals evolved were the branch

42 Chapter 3. Related Work

approach level and the Branch distance. Experiments were performed

on different seven programs that include a certain challenge involving

flags, special function call return values, enumerations and counters that

the evolutionary testing did not succeed to generate test inputs for, but

with incorporating Chaining local search, the hybrid approach success-

fully generated test inputs for those programs.

Study of Wappler and Lammermann [60] focused on validating that

the evolutionary algorithm is the best to be used for generating unit tests

for the white-box testing of the Object-Oriented programs. Some object-

oriented classes need a certain object in a certain state to be used when

being executed. Thus, their main challenge was to generate test cases

that create objects to be used in the test sequence and how to transition

them into a proper state to achieve the test goal. This study employed

a universal evolutionary algorithm supported by independent toolboxes

to be used as an evolutionary operator. Their main procedure extends the

chaining approach starts by encoding the object-oriented test programs

into built-in basic types such as int and floats and generate a individuals

to be used in the test, in order to generate proper individuals they guide

the search algorithm by defining three measure to check the fitness of the

individuals and those measures are

• number of errors

• constructor distance

• error evaluation

3.1. Single Structural Target Approach 43

Their experiment was conducted via Matlab and used to carry out two

studies, the first was to validate the feasibility of their approach and the

result revealed that their approach managed to outperform the random

testing in generating objects in certain states that better describe the ap-

plication under test. Their main objective function was the code cov-

erage criteria. The second experiment was to examine the use of their

fitness measure in the objective function and the results were compared

to Boolean objective functions and showed that incorporating more so-

phisticated measures is essential for a successful evolutionary algorithm.

One of the essential studies was carried out by Wegner et al. [61],

in which they used the Evolutionary algorithm to generate test inputs

for structural tests for procedural programs written in C language. They

divided Structural testing into four categories and each category has its

own fitness function and hence the test itself was partitioned into sev-

eral objectives and as a result, the search becomes more goal-oriented.

The experiment was conducted on seven functions with cyclomatic com-

plexity between 2 and 34 and the number of branches between 5 and

153 and the number of loops was up to 4. The evolutionary algorithm

was executed with 4 or 5 subpopulations containing 40-60 individuals

depending on the complexity of function under testing. The results was

compared to random testing for all test objects, and the evolutionary al-

gorithm achieved full coverage whereas random testing was not able to

achieve full branch coverage for all functions under test.

The main idea behind the whole test suite approach, which targets

44 Chapter 3. Related Work

multiple objectives during a search run, is to overcome the waste of search

budget while seeking to achieve a single objective. Nevertheless, whole

suite approaches have been examined on Object-Oriented programs and

never been compared to iterative single target approaches in the con-

text of procedural programs. The recent algorithm that has been imple-

mented was LIPS (Linearly Independent Path-based Search) by Panichella

et al. [43], They designed an algorithm for generating test data for pro-

grams written in C language, the tool was named OCELOT and its an

abbreviation for Optimal Coverage sEarch-based tooL for sOftware Test-

ing; the authors have built an iterative single target approach that basi-

cally makes use of valuable information from the previous iteration. They

used default GA configuration with SBX-Crossover, polynomial muta-

tion, and binary tournament selector. The target selection strategy in LIPS

was based on the method proposed by McCabe, which computes a max-

imal set of linearly independent paths of a program (basis) [38], then to

evolve a test-cases that covers a certain branch within the path at a time.

Thus if they found a test suites that pass through all branches specified

in the basis paths, then that implies that they covered all branches in the

control flow graph. The results showed that LIPS had shown compara-

ble or better performance than the whole suite approach and achieved

higher branch coverage. Yet, one drawback of LIPS is that it could add

redundancy to test suite; this issue was mitigated by using the greedy

algorithm to minimize the test suite and for fairness was applied on test

suites generated by both LIPS and WTS.

3.2. Multi Structural Target Approach 45

3.2 Multi Structural Target Approach

Fraser and Arcuri [22] have first proposed the idea of Whole Test Suite

(WTS) Optimization, which was implemented in EV OSUITE tool [20].

WTS approach tends to derive a group of test cases that forms a test

suite that covers a set of multi objectives simultaneously. According to

Fraser and Arcuri, the test objectives were never been independent and

not equally difficult. Even more, some of the coverage goals might be in-

feasible; thus the search algorithm could be affected by order of goals and

how many of them are infeasible. Search algorithms require determining

two main things, solution representation and fitness function. The solu-

tions are represented by the test case inputs, and with regard to the fit-

ness function, most of the researchers have made use of branch coverage

which is represented by how far (distance) a solution is from the target

branch. Fraser and Arcuri [22] have defined their solution as a test-suite

whereas their fitness function was summing the branches’ distances and

approach levels of all targeted branches in order to mitigate the depen-

dency between objectives. Their proposed approach has achieved 83%

coverage and outperformed the single-target strategy by 7%, and they

also generated test cases that were 62% smaller of the single-target strat-

egy. The drawback of their approach was that more accessible branches

are most likely to be covered than the harder ones.

Shamshiri et al. [55] conducted a study to compare the effectiveness

46 Chapter 3. Related Work

of Genetic Algorithms to generating test suites incrementally using Ran-

dom search for applications written in Object Oriented. They used three

algorithms, GA that generates test suites (whole test suite approach),

pure Random search and Random search Enhanced with seeding. This

study also sheds light on the branch types and how they affect the per-

formance of each algorithm type, and finally, they analyzed the effect of

the search budget on the output of the algorithms. The results showed

that GA performed slightly better than Random search and the reason

behind this (which was found by the study) is the numerical comparison

branch types which result in a smooth gradient of fitness values, and such

branches are found to be small in number among the applications. Thus,

allowing Enhanced Random search to generate test cases without much

relative disadvantage and performs nearly similar to GA. The experiment

was conducted usingEV OSUITE and executed 1000 times on randomly

selected java classes from SF100 corpus of open-source projects[17]

Fraser et al. [23] enhanced the Genetic Algorithm in theirEV OSUITE

tool by incorporating local search to the individual statements of method

sequences. Unlike other studies that used the local search, this study

considered using complex data types like arrays and Strings. This study

introduced a new algorithm called Memetic Algorithm in which a hy-

brid of global and local search is used; specifically, they have combined

GA and Hill Climbing for container classes. The result of the experiment

showed an increase in branch coverage by 38% over the traditional Ge-

netic Algorithm. Yet, the study observed that the effect is very dependent

3.2. Multi Structural Target Approach 47

on the class on which test generation is applied which in return makes it

impossible to figure out the optimal configuration of MA.

Panichella et al. [44] have implemented MOSA (Many-Objective Sort-

ing Algorithm) in which they have defined their solution as a single test

cases and evaluated its fitness against a set of branches i.e. different

branches are considered as a different objectives to be optimized and the

fitness function is evaluated to all branches at the same time including

those that were not covered yet. MOSA is simply a multi-objective GA

algorithm with an enhanced selection mechanism that depends on deter-

mining the test cases with lower fitness function (which is the sum of

branch distance and approach level) for each uncovered branch. Their

sorting was based on the preference of each solution in relative to the

Pareto fronts. Briefly, the workflow of the algorithm could be explained

as the following, it first selects those test cases with the best fitness func-

tion and guarantees that they will survive to the next generation, so the

first front is built with preference sorting. Next, it will form the other

fronts by sorting the remaining candidate solution using the traditional

non-dominated sorting algorithm used by the NSGAII [11]. Once ranked,

the test cases are selected for next-generation from parents and offspring

based on their ranking and another heuristic value which is "crowd dis-

tance" to ensure diversity among the selected test cases. After each gen-

eration, MOSA updates an archive of best test cases that covers new

branches (uncovered branch) of the class under test to form the final test

48 Chapter 3. Related Work

suite. Finally, it forms the test suite by selecting the shortest test case cov-

ering a certain branch from the archive. MOSA was found to perform

better than a single-objective whole test suite approach by EV OSUITE

and as a result MOSA algorithm was integrated withinEV OSUITE tool.

One main disadvantage of the previous MOSA algorithm is that it

does not take into consideration the structural dependency between tar-

gets of the class under test since some targets can be satisfied if and only

if other related targets are satisfied. In other words, to have a control

dependency within the same class and thus b2 cannot be covered unless

b1 is covered. Panichella et al. [42] has empowered MOSA and imple-

mented an enhanced version named DynaMOSA to deduce which tar-

gets are independent of each other and which of those are dependent (

has control dependency). So, DynaMOSA starts by checking the control

dependency graph and collect independent branches and starts to gener-

ate test cases for them, on next-generation formed at each iteration, the

list of targets will be updated to add those targets that are uncovered and

control dependent on the new targets. This process added dynamicity

to the MOSA algorithm. Their experiment was conducted on 346 Java

classes and the results proved that DynaMOSA performed better than its

predecessor MOSA and Whole test suite approaches in terms of Branch,

statement and mutation coverage. Besides, they reported that the conver-

gence to a test-suite is accomplished faster in DynaMOsa since they kept

the number of objectives small. It’s worth noting here that this study did

not incorporate non-coverage criteria within the algorithm like memory

3.2. Multi Structural Target Approach 49

consumption and execution time.

Arcuri proposed a new algorithm in his study [4] named Many Inde-

pendent Objective (MIO) algorithm and was compared with the Whole

test suite generation approach and Many Objective Sorting Algorithm

(MOSA) with Random generation as a baseline. This study aims to ad-

dress the limitation of WTS and MOSA, which can be summarized as

follows,

• focusing on the exploration and neglecting the exploitation

• keeping the individuals of covered targets in the next generation

which in return negatively affect the tests generations if targets were

independent

• in the presence of infeasible targets, some tests can get good fit-

ness score since those algorithms used branch distance in the fitness

function

• the limitation of generating populations of fixed size

To overcome all mentioned limitations, MIO was designed to operate

with dynamic population, dynamic exploration/exploitation trade-off and

selecting the next target using sampled feedback. Moreover, MIO con-

trols how many mutations and fitness evaluations should be performed

over an individual. MIO keeps an archive of tests for the targets. Ini-

tially the algorithm generates the population randomly, but moving on

and with a defined certain probability to generate a new test randomly,

50 Chapter 3. Related Work

MIO will either select from the archive or generate a new one, if the al-

gorithm is to select individuals, then it will select those that are closer to

achieve a targets with higher chances to cover. The experiment proved

that MIO achieved better results than the other algorithms and in some

cases, it achieved an 80+% coverage improvements.

One of the significant studies that have been conducted in the search-

based unit test generation was a study by Rojas1 et al. [49]. In this study,

the researches tried to target 9 objectives during unit test generation such

as line coverage and output coverage. The authors emphasized that The

limitation of Whole test suite generation is a weakness in covering all

statements of class under test, and that’s because Whole test Suite gen-

eration is based on branch coverage when evaluating individuals and

assumes that if all branches in the control graph were covered then that

implicitly means that all code statements could be covered as well. Yet,

this was not the case. Thus, So this study aimed to include more objects

in the Whole test suite approach to guarantee higher statement coverage.

They extended EV OSUITE and conducted their experiment on Java

classes. They considered that all 9 objectives are non-conflicting. Thus,

they used a linear combination of the different objectives and assigned

each objective certain weights so that to avoid overfitting for strong ob-

jectives. They found out that optimizing and targeting several objectives

at the same time is feasible and does not increase the computational cost.

Moreover, They found out that average coverage of test suites decreased

3.2. Multi Structural Target Approach 51

by 0.4% and the test suite size increased by 70%; however, in some spe-

cific cases where WTS did not manage to provide full coverage, this ap-

proach succeeded to do so.

One of the Major Studies that have been conducted recently is a com-

parison between the Single Target approach and Whole test suite (WS)

and Whole test Suite with Archive approach (WSA) by Rojas et al. [48].

This is a later improvement of the first study by Fraser and his team

[22] In which the authors enhanced the search to focus on the uncov-

ered branch only and uses an archive data structure to store test cases

that already covered branched that were uncovered. The authors con-

ducted a detail empirical study on 100 java classes using three coverage

criteria, (1)Branch Coverage, (2) Weak Mutation Coverage and (3) Line

Coverage. The study has checked each of the approaches by using one

of the mentioned coverage goals at a time and the authors reported the

following,

• The coverage goals that were covered by Single Target GA and were

not covered by WS or WSA turned out to be a special case and can-

not be generalized.

• In Some For some coverage goals, the WS and WSA led to worse.

Yet, those cases are minimal in number when being compared to

the better results that were achieved by WS and WSA

• Introducing the archiving mechanism has improved the traditional

WS and the authors obtained better results (especially for larger

52 Chapter 3. Related Work

classes) although they reported some negative side effects because

of it since it needs special search operators, especially when being

used for smaller classes.

• WS and WSA achieved superior results over the Single Target ap-

proach when being used to generate unit tests for complex classes.

Recently, Grano et al., has extended DynaMosa[42] to generate unit

tests for Object-oriented classes that require minimum resources to be ex-

ecuted. The main challenges that were addressed by this study are how to

generate unit tests that are performance aware without affecting the per-

formance of generation procedure and how to avoid touching the effec-

tiveness of tests in terms of coverage and fault detection. To answer those

questions, the authors have introduced a set of 7 performance proxies (

such as the number of loops, method calls and object instantiating) that

provided insights of test running performance. First, they tried to incor-

porate the performance score as a secondary Objective in the preference

criterion where the first front is selected and in the second trial they add

the performace score to the routine where the archive is updated.In both

cases, they found out that performance criterion competes with cover-

age. Thus, the authors devised pDynaMOSA where they decide whether

to use the performance proxies depending on the search improvements

done during generating unit tests. This adaptive method was introduced

because the authors noticed that unit tests with low-performance indi-

cators lead to low coverage goals. pDynaMOSA algorithm used both

3.3. Adjusting Evolutionary Algorithms 53

the performance proxies and crowding distance as secondary heuristics;

when crowding-distance is used then more diverse test are favored but

when the proxies is selected then test with lower predicted resources de-

mands are chosen. The toggling between two modes is determined by

two things (1) if stagnation is detected on current objective scores (2)

which heuristics is being selected at the current iteration. The results of

the experiment revealed the following, (1) pDynaMOSA and DynaMoSA

is performing similarly for the seven coverage criteria and pDynaMOSA

outperforms the Random Search, (2) pDynaMOSA achieved a mutation

score similar to DynaMOSA and both performed better than random

search and (3) When pDynaMOSA and DynaMOSA achieved the same

target coverage, the test suites constructed by pDynaMOSA are lower in

execution time and heap memory consumption.

3.3 Adjusting Evolutionary Algorithms

Indicator based Evolutionary Algorithms (IBEA) [66] is the well known

indicator-based evolutionary multi-objective algorithm which was pro-

posed by Zitzler and Kunzli in 2004. IBEA allows the incorporation of

any performance indicator into the selection mechanism of an MOEA.

IBEA was originally tested with the hyper-volume [65] and the binary in-

dicator [66]. The main contribution of IBEA is that it provides a general

framework for indicator-based MOEAs, and as described by the authors

54 Chapter 3. Related Work

of this algorithms, “IBEA is based on quality indicators where a function I as-

signs each Pareto set approximation a real value reflecting its quality: Then the

optimization goal becomes the identification of a Pareto set approximation that

minimizes (or maximizes) I”. Moreover, “I induce a total order of the set of

approximation sets in the objective space, in contrast to the classical aggregation

functions like weighted sum that operate on single solutions only and gives rise

to a total order of the corresponding objective vectors. The main drawback

of the original IBEA is the computational operations needed to select the

non dominated solutions which can be summarized as (1) Computing

the quality indicator of the solution set and (2) updating the solution set

and removes the worst by performing a pairwise comparison. Results of

the empirical studies showed that IBEA was superior over two famous

MOEAs, NSGA-II and SPEA2, on several bis or three objective bench-

mark MOPs.

As being stated before, hyper-volume indicator based algorithms are

considered effective in multi-objective evolutionary algorithms (MOEAs),

yet they suffer from a computational bottleneck and high time complex-

ity when measuring the Hyper volume contribution of different solu-

tions. Jiang et al. [34] proposed a simple and fast hypervolume indicator-

based MOEA (FV-MOEA) which quickly updates the HV contributions

of each different evolved solution. The main contribution of the proposed

FV-MOEA can be summarized as the following,

• , they proposed a simple method for measuring the HV contribu-

tion of each solution set by deleting the irrelevant solutions and

3.3. Adjusting Evolutionary Algorithms 55

transferring HV contributions.

• proposed a method to select offspring in HV indicator based algo-

rithms which can save the computational cost of recalculating the

HV indicators when population changes.

The core idea of FV-MOEA is that the HV contribution of a solution is

only associated with partial solutions rather than the whole solution set.

The empirical experiment demonstrated that the proposed algorithm is

in-term of and HV calculations over classical MOEAs such as NSGAII,

SPEA2, MOEA/D, IBEA. The experiment was conducted on 44 bench-

mark MOPs with 2–5 objectives.

Li et al. [35] have proposed a new modification to IBEA named mIBEA,

which adds a Pareto-based element to this indicator-based method, ana-

lyzing the distribution of non dominated solutions found. The Authors

experimented with the behavior of IBEA and found that the search is fo-

cused in certain regions in the search space while solving MOPs. More-

over, they found that IBEA suffers from a lack of diversity in generated

solutions. The proposed method excludes dominated solutions at each

generation after the new population is created by using dominance-based

sorting method of NSGA-II, and that because (according to authors) the

scaling of the objectives’ scores which take place in original IBEA is no

longer affected by dominated solutions which resides far away from the

best non-dominated ones in the population. So the Basic IBEA algorithm

56 Chapter 3. Related Work

was empowered in this study by the ranking from Pareto dominance-

based multi-objective evolutionary algorithm during the elite solution

protection process; specifically, they used fast non-dominated sorting of

NSGA-II to get non-dominated solutions in population and used the non-

dominated solutions as the new population. The empirical results of the

experiment proved that mIBEA is superior IBEA when being examined

over the entire DTLZ benchmark functions. Besides, mIBEA results in

significant improvement in running time over IBEA.

The above two studies are the major ones in the literature that shed

light on IBEA main limitations and drawbacks but yet proved that IBEA

could be modified to overcome those and performs much better in terms

of running time cost and producing more diverse solutions. In our study

I will examine the basic IBEA in the domain of test case generation and

then try to improve it by introducing some tempering from the literature

3.4 Thesis Distinction from Other Studies

This thesis differs from the above-related work in some aspects, which

presents its contribution to the field of test case generation. The differ-

ences can be summarized in the following points:

• Most of the studies tried to improve an already used algorithm by

modifying their nature, introducing new testing utilities, or mak-

ing use of additional data structures like an archive. However, this

3.5. Literature Review Summary 57

study will examine a new algorithm in the domain of test case gen-

eration.

• To The best of our knowledge, this study is the first one that tries

to investigate IBEA in the field of test case Generation. Most of

the researchers avoided analyzing IBEA because of it has a lot of

computation by nature.

• This Study will propose some modifications to basic IBEA as a trial

of improving its performance in the domain of test case generation

• Currently, EV OSUITE framework contains, for example, the im-

plementation of several MOEAs such as SPEA2 and NSGA-II. This

Study will be the first to integrate both Basic IBEA and a modified

version in EV OSUITE tool.

3.5 Literature Review Summary

Table 3.1 summarizes related work done on test case generation using

evolutionary algorithms. None of the studies ever used the Indicator-

Based Evolutionary Algorithm (IBEA) due to the huge calculation that

took place while finding out the best individual. Our Thesis aims to break

through this area and find out the performance of IBEA and how it can

be adjusted to be useful in unit test generation.

This section should be filled after having a discussion with instructor

58 Chapter 3. Related Work

Study
A

pproach
EA

U
sed

Paradigm
#

Technology

Search-based
testing

ofproceduralprogram
s:iterative

single-targetor
m

ulti-targetap-
proach?

[53]
Iterative

single
O

bjective
G

A
+

G
reedy

for
Suite

M
inim

ization
Procedural

C

Evolutionary
Testing

ofC
lasses

[58]
single

O
bjective

G
A

+
G

reedy
for

Suite
M

inim
ization

O
bjectO

riented
Java

H
ybridizing

Evolutionary
Testing

w
ith

the
C

haining
A

pproach
[40]

Single
O

bjective
H

ybrid
ofET

For
G

lobalSearch
+

C
haining

Technique
for

localsearch
Procedural

N
/A

U
sing

Evolutionary
A

lgorithm
s

for
the

U
nitTesting

ofO
bject-O

riented
Softw

are
[60]

Single
O

bjective
U

niversalEvolutionary
A

lgorithm
(G

A
+

Im
proved

C
haining

technique
for

localsearch)
O

bjectO
riented

Java

Evolutionary
testenvironm

entfor
autom

atic
structuraltesting

[61]
Single

O
bjective

G
A

Procedural
C

W
hole

TestSuite
G

eneration
[22]

M
ultiple

-W
hole

testSuite
G

A
O

bjectO
riented

Java

E
V
O
S
U
I
T
E

:A
utom

atic
TestSuite

G
eneration

for
O

bject-O
riented

Softw
are

[20]
M

ultiple
-W

hole
testSuite

G
A

O
bjectO

riented
Java

R
eform

ulating
Branch

C
overage

as
a

M
any-O

bjective
O

ptim
ization

Problem
[44]

M
ultiple

G
A

+
N

SG
A

IIfor
sorting

O
bjectO

riented
Java

M
any

IndependentO
bjective

(M
IO

)[4]
M

ultiple
G

A
O

bjectO
riented

Java

TestSuite
G

eneration
w

ith
M

em
etic

A
lgorithm

s
[23]

M
ultiple

-W
hole

testSuite
G

A
for

globalsearch
+

H
illC

lim
bing

for
localsearch

O
bjectO

riented
Java

R
andom

or
G

enetic
A

lgorithm
Search

for
O

bject-O
riented

TestSuite
G

eneration?s
[55]

M
ultiple

-W
hole

testSuite
G

A
O

bjectO
riented

Java

A
utom

ated
test

case
generation

as
a

m
any-objective

optim
isation

problem
w

ith
dy-

nam
ic

selection
ofthe

targets
[42]

M
ultiple

G
A

O
bjectO

riented
Java

C
om

bining
M

ultiple
C

overage
C

riteria
in

Search-Based
U

nitTestG
eneration

[49]
M

ultiple
G

A
O

bjectO
riented

Java

A
detailed

investigation
ofthe

effectiveness
ofw

hole
testsuite

generation
[49]

Single
target,W

hole
TestSuite

and
W

hole
TestSuite

W
ith

A
rchive

G
A

O
bjectO

riented
Java

Testing
w

ith
Few

er
R

esources:
A

n
A

daptive
A

pproach
to

Perform
ance-A

w
are

Test
C

ase
G

eneration
[25]

M
ultiple

G
A

O
bjectO

riented
Java

T
A

B
L

E
3.1:Literature

R
eview

Sum
m

ary

59

Chapter 4

Research Methodology And

Experiment Setup

The main contribution of this study is to evaluate the performance of

IBEA by comparing it to NSGA-II, report and analyze the results of this

algorithm’s behavior in the domain of unit tests generation. Another

main objective I are willing to achieve is to be the first to integrate IBEA

with EV OSUITE, a Java framework for generating unit-tests. The tool

has several MOEAs implementation and has been used by most of the

studies being reviewed in this thesis.

To achieve the intended goals, I need to devise an experiment to ob-

tain the results. A preliminary step for the experiment, is to learn about

EV OSUITE, implement the algorithm and adjust it to be used within

the tool. The genetic Operations such us mutation and crossover, prob-

lem representation and chromosomes construction are all inherent to the

EV OSUITE tool approach and will be detailed in this chapter.

Moreover, in this chapter I will explain the adopted methodology

60 Chapter 4. Research Methodology And Experiment Setup

used to conduct this study, the testing objectives and its relation to the

fitness functions used to evaluate the generated solution and guide the

algorithm to the best heuristic evaluation. In addition, I will detail the

needed information about the data sources.

4.1 Experiment Data Sources

To analyze the behavior of IBEA as an MOEA in the domain of unit

test generation, this study will count on conducting the experiment on a

group of classes SF110 that were previously presented by Fraser and Ar-

curi [17]. The SF110 was extended by Fraser and his fellows who added

ten projects to SF100, those added projects were considered the most

popular projects. It is worth to note that SF100 is corpus of classes is a

statistically representative sample of 100 Java projects from Sourceforge,

which is a popular open source repository (more than 300,000 projects

with more than two million registered users).

Demonstrating a scientific approach might be necessarily as demon-

strating a practical one, and a technique that found to be working on

small or artificial problems might not be able to behave the same on in-

dustrial bigger problems which might impose a significant complexity.

Having said that, and in order to reduce the external threat of validity

associated with our study, I chose a group of classes from SF110 which

was introduced to address the above mentioned problems.

4.2. Experiment Setup 61

In this empirical study I am planning to use 46 classes that were also

used by Panichella et al. [44] to examine his empirical study. Most of the

classes chosen by Panichella were also used to evaluate the whole test

suite approach [22]. As running the experiment of all classes of SF110 is

a time and resource consuming task, I tried to adopt the choice of pre-

vious significant studies that tried to select a subset of classes under test

to achieve diversity in terms of complexity and functionality. Panichella

et al. [44] chose 64 classes from SF110 with only limitations that at least

each class should contain 50 branches. As can be seen from Table 4.1, the

total number of branches ranges from 50 to 1213 and on average around

215 branches.

4.2 Experiment Setup

In this section I will detail how the solution is represented, the genetic

operations of EV OSUITE and the experiment metrics.

4.2.1 Chromosome Structure

The first step of applying the Evolutionary Algorithms in any domain is

to define how a solution could be presented. The structure of the individ-

uals’ chromosomes could be assumed to be quite simple when applying

evolutionary testing as it usually consist of a sequence of input values

to be provided to the program during test execution. This assumption

is valid in procedural programs and relatively in Object Oriented (OO)

62 Chapter 4. Research Methodology And Experiment Setup

No. Project Class Branches
1 Guava Utf8 63
2 Guava CacheBuilderSpec 139
3 Guava BigIntegerMath 133
4 Guava Monitor 191
5 Tullibee EReader 306
6 Tullibee EWrapperMsgGenerator 67
7 Trove TDoubleShortMapDecorator 59
8 Trove TShortByteMapDecorator 59
9 Trove TCharHash 60
10 Trove TFloatCharHash 87
11 Trove TFloatDoubleHash 87
12 JSci LinearMath 262
13 JSci SpecialMath 196
14 JSci SimpleCharStream 82
15 CommonsCli HelpFormatter 142
16 CommonsCli Option 96
17 CommonsPrimitives RandomAccessByteList 81
18 CommonsCollections TreeList 215
19 CommonsCollections SequencesComparator 89
20 CommonsLang ArrayUtils 1119
21 CommonsLang BooleanUtils 271
22 CommonsLang Conversion 766
23 CommonsLang NumberUtils 383
24 CommonsLang StrBuilder 567
25 CommonsLang DateUtils 314
26 CommonsMath FunctionUtils 64
27 CommonsMath TricubicSplineInterpolatingFunction 80
28 CommonsMath DfpDec 138
29 CommonsMath MultivariateNormalMixtureExpectationMaximization 66
30 CommonsMath MatrixUtils 143
31 CommonsMath SchurTransformer 92
32 CommonsMath AbstractSimplex 59
33 CommonsMath BrentOptimizer 65
34 JDom AttributeList 133
35 JDom SAXOutputter 89
36 JDom XMLOutputter 62
37 JDom Verifier 277
38 JodaTime BasePeriod 79
39 JodaTime BasicMonthOfYearDateTimeField 63
40 JodaTime LimitChronology 112
41 JodaTime PeriodFormatterBuilder 579
42 Tartarus englishStemmer 290
43 Tartarus italianStemmer 228
44 Tartarus turkishStemmer 514
45 XMLEnc XMLChecker 1213
46 XMLEnc XMLEncoder 138

TABLE 4.1: Classes to be used in the Empirical Experiment

4.2. Experiment Setup 63

FIGURE 4.1: Example class and test case

based programs. In fact, in OO programs the representation is more com-

plex because it might imply passing objects (and Objects with a certain

state) to a CUT and not just a primitive inputs. The following code snip-

pet 4.1 shows an example of an OO program and its test case.

In order to understand the representation we should digest the dif-

ference between a test case and test suite. Thus, a test case in OOP is a

sequence of constructor and method invocations, including passing ob-

jects and parameter values to some method during the test execution. A

test suite is a group or set of test cases. We also should keep in mind that

in whole test suite (WTS) generation, the optimization target is not to pro-

duce a test that reaches one particular coverage goal, but it is to produce

a complete test suite that maximizes coverage, while minimizing the size

64 Chapter 4. Research Methodology And Experiment Setup

FIGURE 4.2: Chromosome Structure in WTS

at the same time [23]. Thus, Figure 4.2 illustrates and better describes

how the chromosome will be structured in Whole test suite generation.

4.2.2 Fitness Function

Meta-heuristic algorithm should be guided during solutions generation;

to evaluate the potential found solutions for an optimization problem,

we should have a way to evaluate those solutions and determine the

level of goodness to the subject problem, the means of such an evalua-

tion is always done via a fitness function. The choice of fitness function

is something crucial as it affects the behaviour of the algorithms in the

search space [50]. In this study I need to define a fitness function that can

measure how good a test suite is with respect to the search optimisation

objective; this usually defined as test coverage criterion.

In any type of testing, there should be some pre-determined indica-

tors to measure the efficacy of tests results such as code coverage (state-

ment and branch), weak and string mutation, output coverage, resource

4.2. Experiment Setup 65

consumption and execution time. Studies in search based software test-

ing have adopted a set of metric which reports the degree of which the

source code of the program has been executed when the test run and cov-

erage criteria us the most common used to guide test generation.

In this study I planned to use a standard metric used in search-based

testing, the branch coverage as our evaluation criterion. In order to ex-

plain the branch coverage we need to understand the branch distance

and approach level.

4.2.2.1 Branch distance

Branch distance estimates how close that branch was to evaluating to true

or to false. Let us consider the following if condition in figure

FIGURE 4.3: Code Snippet to explain Branch distance

If we have a concrete test case where a has the value 12, then the

branch distance to make this branch true would be 12 - 8 = 4 while the

branch distance to making this branch false is any number other than 12.

Let d(b, T) be the branch distance of branch b on test suite T can de-

fined according to the following equation,

66 Chapter 4. Research Methodology And Experiment Setup

d(b, T) =



0 if the branch has been covered,

v (dmin(b, T)) if the predicate has been

executed at least twice,

1 otherwise.

(4.1)

where v is any normalizing function in the [0,1] range; for example ν(x) =

x/(x+ 1) [3].

4.2.2.2 Approach Level

In addition to the branch distance and to give more gradient to the search

algorithm instead of just reporting a yes/no on whether the branch was

covered, I also employ the approach level which is usually used in the

SBST by researchers [39]. The approach level A(t, x) for a given test t on

a target xεX is defined as how far is a test case from covering a certain

target in terms of control dependent edges in the control dependency

graph. So in figure 4.4, if we have a test case t15 having the value a = 15,

then the approach level for the target xa>90 is 0 and xa>150 is 1.

4.2.2.3 Fitness Function: Branch Coverage

Our fitness function could be defined as the sum of approach level and

branch distance between a test t and a branch coverage goal x. The main

idea is to give more gradient to the search (instead of just counting "true"

or "false" on whether a goal is covered or not). Having said that, our

4.2. Experiment Setup 67

FIGURE 4.4: A code Snippet to explain the Branch distance
and Approach level

main objective is to minimize this distance. Our fitness function could be

represented according to the following equation [3],

f(t, x) = A(t, x) + v(d(t, xc)) (4.2)

The main objective of the applied search algorithm is to minimize the

fitness function value to achieve a valuable test case and cover all targets.

To illustrate the fitness value in an example, let us refer again to figure

4.4 and suppose that we have a test case t40 having the value a = 40, then

the approach level for the target xa>150 is 1 , hence the fitness for this test

case is 1+v(|40−90|+1) = 1+v(51). This test case t40 will be for example

worse (having higher fitness value) than a test case t110 having the value

a = 110 since the approach level for xa>150 is 0 and the fitness value is

0 + v(|110− 150|+ 1) = v(41).

68 Chapter 4. Research Methodology And Experiment Setup

4.2.3 Evaluation Metrics

After conducting the experiment and in order to compare the algorithm,

this study will use the branch coverage as a metric to indicate how ef-

fective was each algorithm, and the search budget consumption to show

how efficient was every algorithm. Branch coverage of an algorithm can

be be computed as a the total number of covered branch divided by the

total number found in the class. Efficiency will be considered as the time

needed to reach the full coverage. If no full coverage was reached, then

it will be the number of executed statement. Another metric to be used is

the test suite size, its well know from software engineering practitioners

that if two test suites have the same coverage, the smallest is desirable.

Finally, I will calculate the execution time of the test cases, to give abil-

ity for practitioners to choose which test cases to run according to their

schedule and resources.

4.3 Algorithms and EvoSuite

This study aims to implement a prototype using EV OSUITE tool [21],

neither IBEA nor any derived flavor has been implemented before. This

Study will be the first one to add the algorithm to be used as part of the

tool. The following table 4.2 shows the default setting of the algorithms

used in this study.

The experiment associated with this study will conduct a comparison

of three algorithms: 1) NSGA-II 2) IBEA 3) mIBEA. The same parameter

4.3. Algorithms and EvoSuite 69

Parameter Value
Population size 50
Crossover rate 0.75
Crossover type two Point
Mutation rate 0.75
mutation type test suite manipulation
Independent runs 15
Search budget (statements executed) 1,000,000
Timeout (seconds) 600

TABLE 4.2: EvoSuite PARAMETER SETTINGS

values are used for the three algorithms unless the native nature of the

algorithms requires a different configuration. All the algorithm run will

target the same objectives on the same environment. Eventually the com-

parison of this thesis is used to measure the effectiveness and efficiency of

IBEA and the possibility of introducing improvements while preserving

the main objectives.

4.3.1 Genetic Search Operators of EVOSUITE

This study will prototype will inherit the way EV OSUITE tool is repre-

senting the problem and all the genetic operations that can be preformed

over those chromosomes during executing Genetic Algorithms. Selection

operator of the algorithm will be the tournament selection with a tourna-

ment size of 1. However, the search operators employed by the tool will

different and in the new two section will illustrate how are they imple-

mented in EV OSUITE. Moreover, I will explain how randomness is

used to generate the initial population.

70 Chapter 4. Research Methodology And Experiment Setup

4.3.1.1 Chromosome Crossover

Crossover between two parents starts by choosing a random value α be-

tween [0,1], and the operation occurs on two parents P1 and P2 to gener-

ate two off-springs O1 and O2. The first off-spring O1 will contain α|P1|

test cases from the first parent and the last (1−α)|P2| test cases from P2.

However, the second off-spring O2 will contain α|P2| test cases from the

first parent and the last (1 − α)|P1| test cases from P1. The following

figure shows an example of crossover on two test suites 4.5 [22]

FIGURE 4.5: Test Suite Crossover

Since the test cases are independent between them, then all test suites

that the crossover operator will generate will be Valid. Add to this, no off-

spring test suits will have a size bigger than the largest parent.However,

its possible that the total sum of statements in test cases of an offspring

test suite would increase in [22]. EV OSUITE implements this using a

4.3. Algorithms and EvoSuite 71

relative single point crossover, meaning, The splitting point is not an ab-

solute value but a relative value (eg, at position 70%oftest − suite). For

example, if size(testSuite1) = 10 and size(testSuite2) = 20 and splitting

point is 70%, we would have position 7 in the first and 14 in the second

test suites respectively.

4.3.1.2 Chromosome Mutation

Mutation is much complicated comparing to crossover operator because

it could occur on the test suite level and on the test cases level as well.

Starting with test suite, when a test suite T is mutated then each of its test

cases are mutated with a probability of 1/size(T). Then a number of new

random test cases are generated and added to the suite with probability

σ. then the second test suite is added with probability σ2 and so forth

until the ith test case is not added. Its worth noting here that the test

cases are added until the size of test suite T does not exceed the limit N

[22].

Test cases mutation includes three operation will take place with a

probability of 1/3 (1) remove, (2) change and (3) insert. Thus, on average

only one operations will be applied and all of them could be applied with

a probability of (1/3)2, the three operations details will be discussed next,

1. Remove: For a test case t = 〈s1, s2, . . . , sl〉 with length l, each state-

ment si is deleted with probability 1/l. [22]. if any successive state-

ments sj where 1 < j <= l has inputs that depends on the deleted

72 Chapter 4. Research Methodology And Experiment Setup

statement, the dependant statement will be replaced with a new in-

put if possible otherwise it will be deleted.

2. Change: For a test case t = 〈s1, s2, . . . , sl〉 with length l, each state-

ment si is changed with probability 1/l.. If a certain statement that

will be changed is a primitive value or an array, then those will be

changed without invalidating the test-case. but if the input state-

ment was a string, then the string will be mutated similar to the

way a test case is mutated. if the statement was an assignment

then either the left or the right side value of the assignment will be

changed. If the statement is not primitive value and was method,

field or a constructor call then those will be randomly changed but

the return and input types will be preserved

3. Insert: a new statement is inserted With probability σ′, at random

place in the test case. If it is added, then a second statement will be

added with probability σ′2, and so on until the the statement is not

inserted. this operation will continue until he limit L is reached,

Figure 4.6 shows an example of the operations on the three test suites.

After performing the mutation operations on a test case and the changed

test cases appeared to have 0 statements then it will be removed from the

test suite. To evaluates a mutated test suite, then we should execute all

its underlying statements, however and since on average on test case of

a suite would be changed, then there is no need to execute the whole test

4.3. Algorithms and EvoSuite 73

FIGURE 4.6: Test Case Mutation example, the three opera-
tions delete, insert and change are shown [22]

suite, only the changed test cases will be evaluated and the fitness of the

test suit will be updated accordingly [22].

4.3.2 Random Test Case Generation

To Initialize and construct the first population, EV OSUITE randomly

generates test cases that are part of a test suites. Those test suites formu-

lates the first population. Test cases are independent and their probability

of creation as well. Meaning, the probability of constructing a certain test

case is constant and will not be affected by the test cases that are previ-

ously generated. Test cases are sampled randomly and thus any possible

test case in the search space could be generated.

Since the representation of the problem is not trivial and found to be

74 Chapter 4. Research Methodology And Experiment Setup

index (please refer to sections 2.1.2 and 4.2.1), then its some how impos-

sible to generate test suites and cases according to the uniform distribu-

tion because if the limit size of a test case was L, then the possibility of

generating a short test cases will be very low.

EV OSUITE choose a random number according to the uniform dis-

tribution within a certain range [l, L], and then uses the insertion operator

described in section 4.3.1.2 to insert statements in the test case until the

size equals to chosen random number.

4.4 Experiment Assumptions

The following assumptions are considered in this study, some of them

inherent to the EV OSUITE tool.

1. EV OSUITE can only cover the CUT that has no environmental

dependencies like external service or file systems. Moreover, the

tool assumes that the CUT are deterministic, meaning that if a test

case was executed ten times, it will yield the same test result [62]

2. The oracles of test cases are not evaluated by this study. The asser-

tions are all being generated automatically by the tool [22].

3. EvoSuite is subject to ongoing enrichment and contribution by re-

searchers who contribute to it via implementing different multi ob-

jective algorithms and adding them to EvoSuite. I will take a forked

code-base assuming that the latest code of the EV OSUITE tool

4.4. Experiment Assumptions 75

that was published online and referred to by the tool’s official web-

site is valid.

4. Since the subject projects are used in SBST studies and the fact that

a lot of studies aimed to evaluate test approaches by measuring the

defect detection rate then this study assumes that subject under test

are logically reasonable and could have defects which might affect

the generation in case failing test cases were generated.

5. During experiment execution I noticed that the tool thrown some

errors, I consulted the tools main contributors over email and they

said that the reported errors should not affect the coverage goals

used. So I assume that those errors are normal and has no effect the

final evolved solutions.

76

Chapter 5

Experiment Results and Analysis

This chapter will illustrate the results of the experiments that I conducted.

Besides, it will compare the performance of both IBEA and mIBEA in the

scope of generating unit test-cases and how did each algorithm performs

when being added toEV OSUITE tool. Finally, it will compare IBEA [66]

and mIBEA [35] to an already implemented algorithm in EV OSUITE

NSGA-II.

5.1 Algorithm Comparison

The main purpose of this experiment is to evaluate IBEA in the unit-

testing generation problem, and check whether IBEA will generate test

suites that cover a set of certain objectives despite its popularity of high

computational costs in calculating the indicators [44]. This experiment is

intended to achieve the following goals:

1. Implement and add two new algorithms namely IBEA and mIBEA

to the well known tool EV OSUITE

5.1. Algorithm Comparison 77

2. Implement and add two new objectives functions to EV OSUITE

to compute the test suite size and execution time.

3. Examine the behavior of IBEA and mIBEA and provide analysis

on the performance using a base line algorithm NSGA-II which is

already integrated within EV OSUITE

To achieve the above purpose, I will conduct an empirical evaluation

of the feasibility of applying IBEA and mIBEA algorithms in optimiz-

ing whole test suites. As being explained in 4.1, I will experiment over

well-known software source codes that are used in this research area. As

EV OSUITE is designed to be extensible, then the main advantage of

using this tool is that it saves us from investing efforts and time in per-

forming byte-code instrumentation, as well as to handle static and dy-

namic analysis on the source code and develop the needed infrastructure

to generate test-cases based on the previous activities.

5.1.1 Experiment Results

I have used each of the algorithms, namely NSGA-II, IBEA and mIBEA,

to generate test suites for the classes presented in Table B.1. Each algo-

rithm were used for 15 times (i.e. 15 independent runs) upon the subject

CUTs. The metrics that were collected for the generated test suites are the

following,

1. Algorithm Evolution Time: The full-time EV OSUITE spent gen-

erating the test cases

78 Chapter 5. Experiment Results and Analysis

2. Test Suite Size: Number of tests in resulting test suite

3. Test Suite Length: Total number of statements in the final test suite

4. Test Suite Mutation Score: The obtained score for (strong) muta-

tion testing

5. Test Suite Branch Coverage: percentage of covered branches of

CUT

6. Test Suite Execution Time: The time needed by each test case to

examine the CUT

7. Test Suite Covered Goals: Total number of covered goals

5.1.1.1 Experiment Results as Box Plots

The following table 5.1 summarizes the total experiment results which

are of 2,070 record and shows the mean (average) values of the above

metrics.

I am just summarizing the results of our experiment which was left to

run for 25 days. Briefly, I can notice that NSGA-II and Modified IBEA out

performed IBEA and covered a huge number of branches. Modified IBEA

and NSGA-II have a similar branch coverage with a very tiny advantage

for the last. I am not going to depend on this table to analyze the results,

since mean cannot reduce the affect of outliers data.

The difference between IBEA and the other two algorithms is not that

huge, and if we take the test suite length and size into consideration

5.1. Algorithm Comparison 79

TABLE 5.1: Mean Values that summarizes the full Experi-
ment Collected Results

NSGA II Modified IBEA IBEA

Algorithm Evolution Time 554929.87 556548.56 576100.65

Test-suite Branch Coverage 0.8 0.8 0.68

Test-suite Execution Time 36.67 39.48 47.64

Test-suite Length 147.98 145.33 86.21

Test-suite Size 47.76 47.04 27.6

Test-suite Mutation Score 0.34 0.34 0.28

Test-suite Full Coverage 0.93 0.93 0.89

FIGURE 5.1: Generated Test Suite Branch Coverage

80 Chapter 5. Experiment Results and Analysis

which are shown in figure 5.2 and 5.3 , a user has a preference to opt

between two group of algorithms. A group that generates a suite with

higher branch coverage and larger length, and another algorithm which

generates smaller test suites with a minimum lose in the coverage per-

centage. Again, test suite size is something important to practitioner as

the size affects non-functional aspects in testing like maintainability and

readability.

FIGURE 5.2: Generated Test Suite Length

The next box plot 5.4 shows that the three algorithms achieved a sim-

ilar results. The reason behind this shared behavior is that the three al-

gorithms consumed the full search budget trying to achieve the full set

of the target branches. And Since I am using a subject CUTs that have

a huge number of branches, it was almost impossible for the three algo-

rithms to hit a full branch coverage.

5.1. Algorithm Comparison 81

FIGURE 5.3: Generated Test Suite Size

FIGURE 5.4: Algorithm Generation Time

82 Chapter 5. Experiment Results and Analysis

5.1.1.2 Descriptive Statistics of Experiment Results

The following group of tables will show the statistics of the collected data

per each algorithm. The first tables which compares the algorithm in

terms of branch coverage to test-suite execution time shows that NSGA-

II outperforms the other two algorithms in those two metrics.

TABLE 5.2: Add caption

Branch Coverage Test Suite Execution Time

Algorithm Mean SD Median Mean SD Median

IBEA 0.675 0.245 0.696 47.642 497.59 8

M_IBEA 0.796 0.252 0.902 39.475 133.656 13

NSGA II 0.798 0.253 0.907 36.67 195.335 11

The second group of tables 5.3 shows the statistics of test-suite Mu-

tation score and Evolution time of the algorithms. In case of mutation

score, we can see that IBEA was surpassed by Modified IBEA and NSGA-

II. However, for evolution time, I explained briefly that the number of

branches to cover was generally high and thus all algorithms has con-

sumed all search budget in its attempt to chive 100% coverage. I will

conduct a detailed analysis on this metric in section 5.3.

Finally yet importantly, I am showing the metrics that are concerned

with test-suite size and length in table 5.4, we can clearly notice that IBEA

managed to evolve test-suites with minimal size and thus excelled over

its competitors algorithms.

5.2. Branch Coverage Analysis 83

TABLE 5.3: Add caption

Mutation Score Evolution Time

Algorithm Mean SD Median Mean SD Median

IBEA 0.283 0.193 0.258 576100.6 149560 613380

M_IBEA 0.344 0.202 0.326 556548.6 196559.7 613333

NSGA II 0.345 0.198 0.329 554929.9 198740.2 613132

TABLE 5.4: Add caption

Test Suite Size Test Suite Length

Algorithm Mean SD Median Mean SD Median

IBEA 27.603 24.242 20 86.206 63.896 75

M_IBEA 47.036 61.893 26 145.328 159.777 97

NSGA II 47.755 63.16 27 147.98 164.181 98

5.2 Branch Coverage Analysis

This section mainly analyzes the results to answer our first research ques-

tion in which I aim to compare the algorithms in terms of branch cover-

age. For detailed analysis, I decided to perform the analysis according

to the number of branches found in CUTs. Having said that, here is the

grouping that I adopted:

1. 22 - 70

2. 71-100

3. 101-200

4. 201-300

84 Chapter 5. Experiment Results and Analysis

5. 301-1215

The first bar chart shows the branch coverage of each algorithm to the

number of target branches (goals), its obvious that the three algorithms

performs the same.

FIGURE 5.5: Branch Coverage when Number of Branches
is between 22 and 70

FIGURE 5.6: Branch Coverage when Number of Branches
is between 71 and 100

When the number of branches starts to increase beyond 100 branch

per CUT, we start to see that NSGA-II and Modified IBEA has a signif-

icant advantage over the IBEA. The following group figures illustrates

this fact.

The final graph illustrates how the three algorithms perform when

the number of branches increases above 300. Apparently, I got similar

5.2. Branch Coverage Analysis 85

FIGURE 5.7: Branch Coverage when Number of Branches
is between 101 and 200

FIGURE 5.8: Branch Coverage when Number of Branches
is between 201 and 300

close results to the previous ones, IBEA did not manage to compete with

the other two algorithms and achieved a smaller branch coverage. One

thing to notice in the next graph 5.9 is that all three algorithms achieved

more or less the same branch coverage when the number of branches has

exceeded the one thousand. This clearly tells us that no algorithm has

any advantage over the other when the number of branches is huge.

One could expect that NSGA-II and Modified IBEA continue to achieve

high branch coverage when number of branches to cover exceeds 1200

branch. But, I observed that all algorithms behaved similarly. I think the

reason behind that is that all algorithms have consumed all the assigned

budget without a managing to cover more branches each generation; and

86 Chapter 5. Experiment Results and Analysis

FIGURE 5.9: Branch Coverage when Number of Branches
is between 301 and 1215

the coverage seen in this graph is the coverage of first randomly gener-

ated population. Future studies should take into consideration analyzing

such cases, taking into consideration that they should increase the search

budget and timeout assigned to the algorithms. I stated this in the fol-

lowing future work section 6.4.2

To conclude on this and to answer our first research question which

is RQ1: What is the branch coverage of IBEA and Modified IBEA when

being compared to other Multi-Objective Algorithms (MOAs) in gen-

erating test cases?, one can say that NSGA-II and Modified IBEA outper-

form the basic IBEA when targeting CUTs that have branches between

100 and 1000. However, all the three algorithms performed similarly

when the number of branches to target was less than 100 and more than

1000. In addition, I can say that the branch coverage achieved by the algo-

rithm is highly dependent on the target branches to cover, so the higher

5.3. Generation Time Analysis 87

the set of goals number the lower will be the goal coverage.

5.3 Generation Time Analysis

Execution time analysis is an essential verification activity during com-

paring the algorithms. To answer our second Research question, which

tries to compare the algorithms in terms of Efficiency, I am going to ana-

lyze a subset of the data in which all three algorithms managed to achieve

full coverage; meaning, all three algorithms covered all the target goals

that were assigned to them before starting evolution. The following graph

5.10 illustrates how the evolution time changes as the number of branches

increase when all algorithms achieved a 100% coverage, this is another

fact that the number of goals really affect the behavior of the algorithms.

FIGURE 5.10: Evolution Time to Branch Numbers on full
Coverage

Generally, in search based software engineering, the execution time

is a factor to compare and analyze how efficient are the algorithms to

achieve a certain objective. Moreover, its worth to keep in mind that

88 Chapter 5. Experiment Results and Analysis

execution time is a crucial factor for practitioner who will be using the

tool to generate test-cases. Its a must for such a tool to have a reasonable

generation time.

TABLE 5.5: Data Summary for Full Goals Coverage

NSGA II Modified IBEA IBEA

Algorithm Evolution Time 6789.92 7475.8 117010.12

Test-suite Branch Coverage 1 1 0.99

Test-suite Execution Time 10.68 15.58 14.78

Test-suite Length 33.37 33.17 32.83

Test-suite Size 8.37 8.37 8.3

Test-suite Mutation Score 0.51 0.51 0.52

Test-suite Full Coverage 1 1 1

As shown in the previous table 5.5, NSGA II achieved the smaller ex-

ecution time, and hence this answers our second research question RQ2:

How is the execution time of IBEA when being compared to other

MOAs in generating test cases?. Modified IBEA has achieved a very

close result (less than 1 second difference) and IBEA needed around 2

minutes to achieve the full coverage. On the other hand, IBEA achieved

a higher mutation score and generated the smallest test suites in term of

length. This is an expected result since IBEA consumes time in doing

the hyper-volume calculations between all possible solutions. One more

significant thing to shed light on is the enormous reduction in execution

time that was achieved by the Modified IBEA.

5.4. Testing Metrics Analysis 89

It’s also worth noting here the performance of modified IBEA which

has way less execution time, and yet the algorithm still achieves similar

Coverage and Mutation score results when being compared to the base

IBEA, and is very close to NSGA-II which is used as a reference in com-

paring the results.

Another important metric to look at is the test suite execution time, I

can notice that NSGA-II generated a test suites that are cost effective in

terms of allocating resources and execution time. This is the case in all

Multi Objective Evolutionary Algorithms which generates a set of non-

dominated solutions and give the user a variety of solutions to choose

from. So one could favour IBEA in case he wants to get the smallest

test suites possible and go for Modified IBEA or NSGA-II if he wanted

to expedite generation. Finally, if the user aims for the fastest test suites

in terms of execution he would choose NSGA-II; NSGA-II then can be

used in generating regression test-cases where the execution resources

and budget are limited.

5.4 Testing Metrics Analysis

This section will analyse the results from Quality Assurance developers

point of view. Thus I will compare the algorithms using testing metrics

like size, length, execution time and mutation score. This section also

answer our third questions which is RQ3: What is the size and execution

time of the test suite generated by IBEA when being compared to other

90 Chapter 5. Experiment Results and Analysis

MOAs in generating test cases?. Execution time and Size of test suite

do really concern the QA developers because the size gives indication on

how difficult it is to maintain a test suite and add assertions for it, and the

execution time gives practitioner the ability to schedule their resources

and releases.

Test suite size, which is a test metric that I aimed to minimize. Ac-

cording to the next figure 5.11 one can notice that IBEA generates test

cases with the minimal size and beats out other algorithms. Next in the

lines are Modified IBEA and NSGA-II with the largest test suites size.

There is a slight advantage for Modified IBEA over NSGA-II.

FIGURE 5.11: Test-suite Size to Target Goals

Test suite Length which is related to how many code lines are there

in a test suite. Similar to test-suite size, I aim to get this metric minimized

during generation. The next figure 5.12 represent algorithms comparison

with regard to test suite size. Again IBEA generates test cases with the

minimal length and exceed out other algorithms. Modified IBEA and

NSGA-II are more or less the same with tiny lead to the first.

Test suite Execution Time is another metric to be used in comparison.

As seen in the next figure 5.13 results between algorithms differ as the

5.4. Testing Metrics Analysis 91

FIGURE 5.12: Test-suite Length to Target Goals

target goals changes, thus I am going to split the reading into two groups

according to test goals number:

1. Test goals number lower than 200: I can see that NSGA-II and Mod-

ified IBEA are competing but its crystal clear that both beats out

IBEA.

2. Test goals greater than 200: IBEA now takes the lead with signifi-

cant minimization of the execution time, next in line are NSGA-II

and finally Modified IBEA.

Test suite Mutation score: one more objective that I did not try to

optimize but is used heavily in the literature to compare algorithms is

mutation score. Mutation score is one more valuable metric for QA devel-

opers, usually developers insert artificial mutants in the code and check

whether a test-suite can discover it. This how EV OSUITE also measure

the mutation score but instead of having the mutants inside the source

code they are added at the byte level using byte code instrumentation.

92 Chapter 5. Experiment Results and Analysis

FIGURE 5.13: Test-suite Execution Time to Target Goals

5.5. Statistical Analysis 93

The last figure 5.14 represent the mutation score of the three algo-

rithms. Generally, NSGA-II and Modified IBEA performs the same and

crush IBEA in generating test suites with high mutation score.

FIGURE 5.14: Test-suite Mutation Score to Target Goals

5.5 Statistical Analysis

In this section, I will be statistically analyzing our collected data and

whether there is a significant difference or not. To accomplish that, I have

conducted two types of tests. The first is Friedman test which I used to

prove that there is indeed a differences between our metrics that were

collected and observed across multiple experiment runs. The following

94 Chapter 5. Experiment Results and Analysis

table summarizes the results of Friedman test conducted on our experi-

ments observation.

TABLE 5.6: Friedman test of metrics collected

Metric p-Value statistic

Branch-Coverage 1.78E-14 63.32283465

Execution Time 9.53E-08 32.33333333

Total Coverage 1.63E-14 63.5

Mutation Score 1.01E-06 27.61490683

Generation_time 0.004656155 10.73913043

Size 3.66E-11 48.06060606

Length 7.48E-11 46.63218391

As shown in the table 5.6, the p− V alue for each of the observed met-

rics is less than 0.05 and thus we can reject the Idea that all the differences

between the collected data are due to stochastic nature of the genetic al-

gorithms. Next, I will show the results of the post Friedman analysis

to figure out which algorithms (groups) differ from which algorithms.

To accomplish the pairwise comparison between the algorithms, I have

used the Wilcoxon signed rank test; this test is used to compare repeated

measurements on the same sample and verify that the measured means

have different ranks.

The following table shows the pairwise comparison of the Evolution

time metric, the table shows Modified IBEA and NSGA-II. Moreover, it

shows that there were no significant differences between any other algo-

rithm pairs.

Next, I will show the Wilcoxon test results for the metrics in which I

used in calculating the objective (fitness) functions during evolving test

5.5. Statistical Analysis 95

TABLE 5.7: Evolution Time Pair Wise Comparison

Evolution Time

Algorithm-A Algorithm-B p Significance

M_IBEA IBEA 1 ns

M_IBEA NSGA II 0.000804 ***

IBEA NSGA II 0.48 ns

suites.

TABLE 5.8: Evolved Test-suite Branch Coverage

Test-suite Branch Coverage

Algorithm-A Algorithm-B p Significance

M_IBEA IBEA 0.000000525 ****

M_IBEA NSGA II 0.007 **

IBEA NSGA II 0.000000777 ****

TABLE 5.9: Evolved Test-suite Length

Test-Suite Length

Algorithm-A Algorithm-B p Significance

M_IBEA IBEA 4.68E-08 ****

M_IBEA NSGA II 0.087 ns

IBEA NSGA II 0.000000108 ****

As stated in the Branch coverage table 5.8, there is a significance dif-

ferences between all Algorithms. Tables 5.9 and 5.7 show that all algo-

rithms differs, but there is no significant statistic difference between Mod-

ified IBEA and NSGA-II when measuring test suite length and execution

time.

The next two tables 5.11 and 5.12 show the pairwise comparison of

mutation score and test suite size, which reflects the number of test cases

inside a test suite. In case of Test-suite size there is a difference between

96 Chapter 5. Experiment Results and Analysis

TABLE 5.10: Evolved Test-suite Execution Time

Test Suite Execution Time

Algorithm-A Algorithm-B p Significance

M_IBEA IBEA 0.0000192 ****

M_IBEA NSGA II 0.816 ns

IBEA NSGA II 0.000417 ***

all algorithms, however, in case of mutation score I can see that there is

a difference between Modified IBEA and IBEA, IBEA and NSGA-II, but

there is none between Modified IBEA and NSGA-II.

TABLE 5.11: Evolved Test-suite Size

Test-Suite Size

Algorithm-A Algorithm-B p Significance

M_IBEA IBEA 0.00000107 ****

M_IBEA NSGA II 0.043 *

IBEA NSGA II 0.000000855 ****

TABLE 5.12: Evolved Test-suite Mutation Score

Test-Suite Mutation Score

Algorithm-A Algorithm-B p Significance

M_IBEA IBEA 0.0000315 ****

M_IBEA NSGA II 1 ns

IBEA NSGA II 0.000107 ***

97

Chapter 6

Conclusion And Future Work

This chapter will discuss the threats to validity that might exist in our ex-

periment, in addition to the main conclusion, obstacles and complexities

that I ran into and finally the future work.

6.1 Threats to Validity

This section analyzes the threats of validity which cares about the possi-

bility of endangering the trustworthiness of the thesis or the existence of

biasing factors that could affect the experiment and its results.

6.1.1 Threats to construct validity

I identified two major threats related to the experiment design,

• The first one is related to the choice of our metrics used in com-

paring the algorithms, which for example does not take into ac-

count the severity of faults nor the line coverage. However, our

98 Chapter 6. Conclusion And Future Work

choice was based on what concerns the software engineers when

they are about to write unit tests, or generate them using a simi-

lar tools. Moreover, I took into consideration two non functional

metrics which aim to reduce the execution time and length of a test

suite; minimizing execution yield a utilization in resources and cost,

and shrinking length of a test suite would reduce the effort needed

by the practitioner to add assertions and maintain it. Since this ex-

periment is repeatable, future studies might count on different met-

rics to capture the difference between algorithms.

• The second one is related to the nature of meta-heuristic algorithms

which could generate different optimized solutions for the same in-

put. This could cause the generation of outliers solutions. I miti-

gated this by running the algorithms on 46 different CUTs that were

chosen from a well known data set. Each algorithm were put to run

for 15 independent run. Its worth mentioning here that the data

set is taken SF110 corpus of classes which is adopted by the tool

designer and used a lot in the Search-based software testing.

6.1.2 Threats to Internal validity

The main two threats I identified in the tool used in our experiment are

(1) the experiment effect on the results and (2) whether I have a bug in

the code or not. To validate the implementation of the algorithms, I con-

ducted a preliminary experiment over a set of nine classes provided by

6.1. Threats to Validity 99

the tool authors. The results of this experiment was reported in Appendix

B. In addition, I tried to mitigate this by debugging the code several times

and running a full mini experiment on 9 CUTs in which each algorithm

was left to generate test cases for 20 independent runs. Besides, I ana-

lyzed the results, checked the code and verified via the tools logs that

everything worked as expected. Finally and to reduce the effect of the

platform used to run the experiment, the full experiment was handled on

the same AWS Machine for the three algorithms.

6.1.3 Threats to conclusion validity

The choice of the statistical test might not be the best approach to exam-

ine the differences between the algorithms performances and affect our

conclusion. To mitigate this and since I can’t tell if the collected data is

normally distributed, I used two types of statistical tests; the Friedman

test which is a Non-parametric equivalent that is used to tell if there is

a difference among the algorithms used. Moreover, I conducted a post-

hoc tests to do a pair wise comparison using Wilcoxon signed rank test

to figure out which pairs are different.

6.1.4 Threats to external validity

This type of validity is concerned about the generalization of the study

and the representability of the experimental subjects. The first threat

100 Chapter 6. Conclusion And Future Work

could be related to the classes used and whether they represent a typi-

cal code; sizes of the classes used in this experiment are considered huge,

the number of code lines and branches is huge, some CUTs have more

than 1200+ branches. These days, all programming languages urges de-

velopers to have classes that do not exceed a 1500 line of code for the

sake of maintainability and readability [57], and if they exceeded that

number then they should be splitted into two separated classes. The Sec-

ond threat is the fitness functions, which concern the branch coverage,

length and execution time of a test suite. In future work, one could en-

hance this fitness function to include other code coverage aspects of a

test case like statement and path coverage. Yet, from an industry point of

view, it’s more important to get a test case that covers a considerable part

of the code, and has a reasonable execution time and length. Less time

meaning less cost and smaller length could yield a better maintainability

6.2 Conclusion

The main objective of this thesis was to study the IBEA algorithm as a

multi objective evolutionary algorithm in the problem of generating and

optimizing unit tests. This study aimed to optimize three main objectives,

test execution time, branch coverage and test size; three metrics that I

consider as the most important for QA developers.

As IBEA is well known for its high cost HV calculations, it was not

examined before in unit-tests optimization. To our best knowledge, our

6.2. Conclusion 101

study was the first to examine IBEA in such an optimization problem.

In addition, I aimed also to use a modified version of IBEA in which I

simplify the complicated computations overhead without affecting the

optimization goals. To analyze the two IBEA algorithms, I decided to

conduct a comparison with NSGA-II .

Our results revealed that IBEA has outperformed both NSGA-II and

Modified IBEA in generating test suites that are small in size and need

less execution time. On the other hand, IBEA was outperformed by the

other algorithms when it tries to optimize test-cases to cover a certain set

of branches. Our study revealed that both Modified IBEA and NSGA-II

achieved more or less close scores in those three metrics, with a slight

advantage for Modified IBEA in optimizing test case execution length

and a tiny lead for NSGA-II when it comes down to the branch coverage

and execution time.

This is the main characteristics of MOEA where it provides to the user

a set of solutions to choose among. So, I can’t conclude that the IBEA

did not perform well, on the contrary, it achieved higher scores in test

suite execution time and length. Hence, if a decision owner is willing to

optimize the resources and efforts of maintaining a test suite, he should

choose IBEA, otherwise he can go with NSGA-II or Modified IBEA for

having a test suites that achieves a significant high branch coverage

102 Chapter 6. Conclusion And Future Work

6.3 Difficulties and Obstacles

6.3.1 Mastering EV OSUITE

Although EV OSUITE is extensible tool, but I faced some issues in im-

plementing the algorithm and integrating it withEV OSUITE. Its a com-

plicated tool and a lot of developers and researchers contributed to it, so

it was not a trivial task. Moreover, I faced some complexities in adding

two fitness functions that I chose to use in this thesis. In addition and due

to the fact that its open source tool, I did not manage to add unit tests to

test our work; building the tool along with executing its unit tests was

impossible, because the build always fails. And thus, I was not very con-

fident that taking the latest code version is the best approach. Neverthe-

less, I mitigated this issue by conducting a mini preliminary experiment

to check the validity of the code added.

The second complexity that I ran into was the Java versions. Accord-

ing to developers of EV OSUITE, the tool is compatible with Java 8, 9

and 10. Although this is true, but the tool was not capable to generate

unit-tests when invoking it in an environment running Zulu Java imple-

mentation. I found that the tool is only compatible with certain Java im-

plementation like Oracle JDK or OpenJDK. So, I setup the experiment

environment to run Java OpenJDK.

The third difficulty was exposing a certain metric from EV OSUITE.

It was strange to us that EV OSUITE is not designed to expose the test-

case execution time. It was not easy to expose a new non-coverage metric,

6.4. Future Work 103

but I managed to tweak the code a bit and expose the execution time of a

test-case and tests suite.

6.4 Future Work

In his section I will introduce what future studies can contribute to Search-

based software testing and IBEA as a Multi Objective Indicator Algo-

rithm, starting from modifying IBEA till contributing to the tool used

in this study.

6.4.1 Analyzing different Variations of IBEA

One of the main concerns that this thesis aimed to, is the IBEA penetrat-

ing the field of Automating unit test generation. A lot of researchers were

not keen to use the IBEA because of its high computational cost. This

thesis studied both IBEA and a variation named modified IBEA. Future

work would be to analyse and study different flavors of this algorithm.

Moreover, there is a room of introducing a specific flavor of IBEA that fits

the problem of unit test generation.

6.4.2 Analyzing CUT with large number of objectives

While analyzing the results of our experiment, I have found out that the

algorithms behave more or less the same when the CUTs have a large

104 Chapter 6. Conclusion And Future Work

number of goals to cover. Since this experiment is repeatable, future stud-

ies could run larger scale exploratory studies that aim to figure out and

analyze the behavior of algorithms when they are put to target large num-

ber of objectives and clarify the reasons behind the algorithm’s behavior.

Algorithms should be assigned larger search budget and longer timeout

to the algorithms and examine the branch coverage of each algorithm.

6.4.3 IBEA to cover single branches at a time

As being emphasized in this thesis, the computation cost associated with

the exact calculation of the hyper volume indicator in a high-dimensional

space (i.e., with more than five objectives) is too expensive [44], making it

impracticable to be used in the domain of test case generation where I tar-

get the branches individually as a standalone target instead of the Whole

Suite approach where I target a group of branches as a single objective.

Having said that, there is a room here to evaluate IBEA (as well as to

other variations of IBEA) and analyze how it performs when formulating

the problem to target single branches at a time. IBEA then should be

compared to MOSA [42, 44] and LIPS [43] and other approaches which

focuses on generating a test case that covers a single branch at a time.

In order to improve IBEA performance, future work shall follow the

researches in this area and apply some modification to the basic flow of

IBEA to reduce its calculation time. The main idea would be around

keeping the best test-cases during generation and saving some of the

6.4. Future Work 105

search budget. To accomplish that, and inspired by the literature of this

thesis, I suggest the following:

• The user of Archive to store the test cases which covered a certain

branches and make use of the budget to generate test cases for the

uncovered branches. This approach should also take into consider-

ation the collateral branches a test case could cover by chance.

• Control the algorithm by enabling local search and pausing global

search whenever the algorithm is close to cover a group of branches.

• Another possibility is to have multiple sets of target branches, and

the total distance for each set is considered an objective by itself.

Each set is reduced and completed again within each iteration.

• Make use of path testing to determine the control flow graph of

CUT and considering the dependencies between branches and start

covering a certain branch only if its not dependent on a parent

branch.

Its worth noting here that future studies could adopt any of the sug-

gested enhancements or a group of them to improve the algorithm’s per-

formance.

6.4.4 Contribute to EvoSuite

EV OSUITE is an extensible open source tool, anyone can contribute to

this tool through their source code which can be found on GitHub ??,

106 Chapter 6. Conclusion And Future Work

and there are some testing techniques and search-based tools that can be

found in other tools and are missing in EV OSUITE. I found that future

studies could contribute to EV OSUITE through the following:

• Adding more code coverage criteria as well as to non-functional

coverage functions such as readability and maintainability.

• Adding the capability to measure the Quality Indicators for the

solution sets produced via applying different Algorithms, such as

Spread, Epsilon and Hyper-Volumes quality indicators.

• Enhance the tool by adding the capability to conduct Statistical tests

to compare the results of the generating algorithms.

• Contribute to the tool by adding different multi objective Genetic

Algorithms such as Cellular Genetic Algorithm MOCell [41].

107

Bibliography

[1] Abdel Rahman Ali M Ahmed, Mohamed H Gadallah, and Hes-

hamA Hegazi. “Multi-Objective Optimization Indices: A Compar-

ative Analysis”. In: Australian Journal of Basic and Applied Sciences

8.4 (2016), pp. 1–12.

[2] Andrea Arcuri. “A theoretical and empirical analysis of the role of

test sequence length in software testing for structural coverage”. In:

IEEE Transactions on Software Engineering 38.3 (2011), pp. 497–519.

[3] Andrea Arcuri. “It really does matter how you normalize the branch

distance in search-based software testing”. In: Software Testing, Ver-

ification and Reliability 23.2 (2013), pp. 119–147.

[4] Andrea Arcuri. “Many independent objective (MIO) algorithm for

test suite generation”. In: International Symposium on Search Based

Software Engineering. Springer. 2017, pp. 3–17.

[5] Andrea Arcuri. “RESTful API automated test case generation”. In:

2017 IEEE International Conference on Software Quality, Reliability and

Security (QRS). IEEE. 2017, pp. 9–20.

108 Bibliography

[6] Dave Astels. Test driven development: A practical guide. Prentice Hall

Professional Technical Reference, 2003.

[7] Moritz Beller et al. “When, how, and why developers (do not) test

in their IDEs”. In: Proceedings of the 2015 10th Joint Meeting on Foun-

dations of Software Engineering. 2015, pp. 179–190.

[8] Jason Brownlee. Clever algorithms: nature-inspired programming recipes.

Jason Brownlee, 2011.

[9] Kai H Chang et al. “A performance evaluation of heuristics-based

test case generation methods for software branch coverage”. In: In-

ternational Journal of Software Engineering and Knowledge Engineering

6.04 (1996), pp. 585–608.

[10] Kalyanmoy Deb. Multi-objective optimization using evolutionary algo-

rithms. Vol. 16. John Wiley & Sons, 2001.

[11] Kalyanmoy Deb et al. “A fast elitist non-dominated sorting ge-

netic algorithm for multi-objective optimization: NSGA-II”. In: In-

ternational conference on parallel problem solving from nature. Springer.

2000, pp. 849–858.

[12] Srinivas Devadas, Abhijit Ghosh, and Kurt Keutzer. “An observability-

based code coverage metric for functional simulation”. In: Proceed-

ings of International Conference on Computer Aided Design. IEEE. 1996,

pp. 418–425.

[13] Chartchai Doungsa-ard et al. “An automatic test data generation

from UML state diagram using genetic algorithm.” In: (2007).

Bibliography 109

[14] Feijoo E Colomine Duran, Carlos Cotta, and Antonio J Fernández-

Leiva. “A comparative study of multi-objective evolutionary algo-

rithms to optimize the selection of investment portfolios with car-

dinality constraints”. In: European Conference on the Applications of

Evolutionary Computation. Springer. 2012, pp. 165–173.

[15] Roger Ferguson and Bogdan Korel. “The chaining approach for

software test data generation”. In: ACM Transactions on Software En-

gineering and Methodology (TOSEM) 5.1 (1996), pp. 63–86.

[16] G. Fraser and A. Arcuri. “Whole Test Suite Generation”. In: IEEE

Transactions on Software Engineering 39.2 (2013), pp. 276–291. DOI:

10.1109/TSE.2012.14.

[17] Gordon Fraser and Andrea Arcuri. “A large-scale evaluation of au-

tomated unit test generation using evosuite”. In: ACM Transactions

on Software Engineering and Methodology (TOSEM) 24.2 (2014), p. 8.

[18] Gordon Fraser and Andrea Arcuri. “Evolutionary generation of whole

test suites”. In: 2011 11th International Conference on Quality Software.

IEEE. 2011, pp. 31–40.

[19] Gordon Fraser and Andrea Arcuri. “EvoSuite at the SBST 2016 Tool

Competition”. In: 9th International Workshop on Search-Based Soft-

ware Testing (SBST’16) at ICSE’16. 2016, pp. 33–36.

[20] Gordon Fraser and Andrea Arcuri. “EvoSuite: automatic test suite

generation for object-oriented software”. In: Proceedings of the 19th

https://doi.org/10.1109/TSE.2012.14

110 Bibliography

ACM SIGSOFT symposium and the 13th European conference on Foun-

dations of software engineering. ACM. 2011, pp. 416–419.

[21] Gordon Fraser and Andrea Arcuri. “EvoSuite: automatic test suite

generation for object-oriented software”. In: Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Foun-

dations of Software Engineering. ESEC/FSE ’11. Szeged, Hungary:

ACM, 2011, pp. 416–419. ISBN: 978-1-4503-0443-6. DOI: 10.1145/

2025113.2025179. URL: http://doi.acm.org/10.1145/

2025113.2025179.

[22] Gordon Fraser and Andrea Arcuri. “Whole test suite generation”.

In: IEEE Transactions on Software Engineering 39.2 (2012), pp. 276–

291.

[23] Gordon Fraser, Andrea Arcuri, and Phil McMinn. “Test suite gen-

eration with memetic algorithms”. In: Proceedings of the 15th an-

nual conference on Genetic and evolutionary computation. ACM. 2013,

pp. 1437–1444.

[24] Gordon Fraser and Andreas Zeller. “Generating parameterized unit

tests”. In: Proceedings of the 2011 International Symposium on Software

Testing and Analysis. 2011, pp. 364–374.

[25] Giovanni Grano et al. “Testing with Fewer Resources: An Adaptive

Approach to Performance-Aware Test Case Generation”. In: arXiv

preprint arXiv:1907.08578 (2019).

https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179

Bibliography 111

[26] Mark Harman, Yue Jia, and Yuanyuan Zhang. “Achievements, open

problems and challenges for search based software testing”. In: 2015

IEEE 8th International Conference on Software Testing, Verification and

Validation (ICST). IEEE. 2015, pp. 1–12.

[27] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. “Search-

based software engineering: Trends, techniques and applications”.

In: ACM Computing Surveys (CSUR) 45.1 (2012), pp. 1–61.

[28] Børge Haugset and Geir Kjetil Hanssen. “Automated acceptance

testing: A literature review and an industrial case study”. In: Agile

2008 Conference. IEEE. 2008, pp. 27–38.

[29] John Henry Holland et al. Adaptation in natural and artificial systems:

an introductory analysis with applications to biology, control, and artifi-

cial intelligence. MIT press, 1992.

[30] Marnie L Hutcheson. Software testing fundamentals: Methods and met-

rics. John Wiley & Sons, 2003.

[31] Laura Inozemtseva and Reid Holmes. “Coverage is not strongly

correlated with test suite effectiveness”. In: Proceedings of the 36th

international conference on software engineering. 2014, pp. 435–445.

[32] Hisao Ishibuchi, Yusuke Nojima, and Tsutomu Doi. “Comparison

between single-objective and multi-objective genetic algorithms: Per-

formance comparison and performance measures”. In: 2006 IEEE

International Conference on Evolutionary Computation. IEEE. 2006, pp. 1143–

1150.

112 Bibliography

[33] David Janzen and Hossein Saiedian. “Test-driven development con-

cepts, taxonomy, and future direction”. In: Computer 38.9 (2005),

pp. 43–50.

[34] Siwei Jiang et al. “A simple and fast hypervolume indicator-based

multiobjective evolutionary algorithm”. In: IEEE Transactions on Cy-

bernetics 45.10 (2014), pp. 2202–2213.

[35] Wenwen Li et al. “A modified indicator-based evolutionary algo-

rithm (mIBEA)”. In: 2017 IEEE Congress on Evolutionary Computation

(CEC). IEEE. 2017, pp. 1047–1054.

[36] Lu Luo. “Software testing techniques”. In: Institute for software re-

search international Carnegie mellon university Pittsburgh, PA 15232.1-

19 (2001), p. 19.

[37] Sumio Masuda and Kazuo Nakajima. “An optimal algorithm for

finding a maximum independent set of a circular-arc graph”. In:

SIAM Journal on Computing 17.1 (1988), pp. 41–52.

[38] Thomas J McCabe. “A complexity measure”. In: IEEE Transactions

on software Engineering 4 (1976), pp. 308–320.

[39] Phil McMinn. “Search-based software test data generation: a sur-

vey”. In: Software testing, Verification and reliability 14.2 (2004), pp. 105–

156.

[40] Phil McMinn and Mike Holcombe. “Hybridizing evolutionary test-

ing with the chaining approach”. In: Genetic and Evolutionary Com-

putation Conference. Springer. 2004, pp. 1363–1374.

Bibliography 113

[41] Antonio J Nebro et al. “Mocell: A cellular genetic algorithm for

multiobjective optimization”. In: International Journal of Intelligent

Systems 24.7 (2009), pp. 726–746.

[42] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.

“Automated test case generation as a many-objective optimisation

problem with dynamic selection of the targets”. In: IEEE Transac-

tions on Software Engineering 44.2 (2017), pp. 122–158.

[43] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.

“Lips vs mosa: a replicated empirical study on automated test case

generation”. In: International Symposium on Search Based Software En-

gineering. Springer. 2017, pp. 83–98.

[44] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.

“Reformulating branch coverage as a many-objective optimization

problem”. In: 2015 IEEE 8th international conference on software test-

ing, verification and validation (ICST). IEEE. 2015, pp. 1–10.

[45] Marllos Paiva Prado and Auri Marcelo Rizzo Vincenzi. “Towards

cognitive support for unit testing: A qualitative study with practi-

tioners”. In: Journal of Systems and Software 141 (2018), pp. 66–84.

[46] Outi Räihä. “Applying genetic algorithms in software architecture

design”. MA thesis. 2008.

[47] Colin R Reeves. “A genetic algorithm for flowshop sequencing”.

In: Computers & operations research 22.1 (1995), pp. 5–13.

114 Bibliography

[48] José Miguel Rojas et al. “A detailed investigation of the effective-

ness of whole test suite generation”. In: Empirical Software Engineer-

ing 22.2 (2017), pp. 852–893.

[49] José Miguel Rojas et al. “Combining multiple coverage criteria in

search-based unit test generation”. In: International Symposium on

Search Based Software Engineering. Springer. 2015, pp. 93–108.

[50] Omur Sahin and Bahriye Akay. “Comparisons of metaheuristic al-

gorithms and fitness functions on software test data generation”.

In: Applied Soft Computing 49 (2016), pp. 1202–1214.

[51] Dragan Savic. “Single-objective vs. multiobjective optimisation for

integrated decision support”. In: (2002).

[52] Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. “On the

value of user preferences in search-based software engineering: a

case study in software product lines”. In: Proceedings of the 2013

International Conference on Software Engineering. IEEE Press. 2013,

pp. 492–501.

[53] Simone Scalabrino et al. “Search-based testing of procedural pro-

grams: Iterative single-target or multi-target approach?” In: Inter-

national Symposium on Search Based Software Engineering. Springer.

2016, pp. 64–79.

[54] Sina Shamshiri et al. “Do automatically generated unit tests find

real faults? an empirical study of effectiveness and challenges (t)”.

Bibliography 115

In: 2015 30th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE). IEEE. 2015, pp. 201–211.

[55] Sina Shamshiri et al. “Random or genetic algorithm search for object-

oriented test suite generation?” In: Proceedings of the 2015 Annual

Conference on Genetic and Evolutionary Computation. ACM. 2015, pp. 1367–

1374.

[56] Chayanika Sharma, Sangeeta Sabharwal, and Ritu Sibal. “A survey

on software testing techniques using genetic algorithm”. In: arXiv

preprint arXiv:1411.1154 (2014).

[57] Michael Smit et al. “Maintainability and source code conventions:

An analysis of open source projects”. In: University of Alberta, De-

partment of Computing Science, Tech. Rep. TR11 6 (2011).

[58] Paolo Tonella. “Evolutionary testing of classes”. In: ACM SIGSOFT

Software Engineering Notes. Vol. 29. 4. ACM. 2004, pp. 119–128.

[59] Joris Van Geet et al. “A lightweight approach to determining the

adequacy of tests as documentation”. In: Proc. of the 2nd Workshop

on Program Comprehension through Dynamic Analysis. 2006, pp. 21–

26.

[60] Stefan Wappler and Frank Lammermann. “Using evolutionary al-

gorithms for the unit testing of object-oriented software”. In: Pro-

ceedings of the 7th annual conference on Genetic and evolutionary com-

putation. ACM. 2005, pp. 1053–1060.

116 Bibliography

[61] Joachim Wegener, André Baresel, and Harmen Sthamer. “Evolu-

tionary test environment for automatic structural testing”. In: In-

formation and software technology 43.14 (2001), pp. 841–854.

[62] Darrell Whitley. “A genetic algorithm tutorial”. In: Statistics and

computing 4.2 (1994), pp. 65–85.

[63] Manuel W Wik. “Revolution in information affairs: Tactical and

strategic implications of Information Warfare and Information Op-

erations”. In: A. Jones, GL Kovacic h & PG Luzwick (eds.), Global infor-

mafion warfare (2002), pp. 579–628.

[64] Randy A Ynchausti. “Integrating unit testing into a software devel-

opment team’s process”. In: XP 1 (2001), pp. 84–87.

[65] Eckart Zitzler. Evolutionary algorithms for multiobjective optimization:

Methods and applications. Vol. 63. Citeseer, 1999.

[66] Eckart Zitzler and Simon Künzli. “Indicator-based selection in mul-

tiobjective search”. In: International Conference on Parallel Problem

Solving from Nature. Springer. 2004, pp. 832–842.

117

Appendices

118

Appendix A

Thesis External Links

Item link

EvoSuite
GitHub

https://github.com/EvoSuite/evosuite

Experiment
Code Base

https://github.com/HadiAwad/evosuite

Thesis Latex
Document

https://www.overleaf.com/read/
smgssbkchfhy

Thesis Source
Code

https://github.com/HadiAwad/evosuite

Google Google.com

https://github.com/EvoSuite/evosuite
https://github.com/HadiAwad/evosuite
https://www.overleaf.com/read/smgssbkchfhy
https://www.overleaf.com/read/smgssbkchfhy
https://github.com/HadiAwad/evosuite
Google.com

119

Appendix B

Preliminary Experiment Results

To validate the implementation of the algorithms, we conducted a pre-

liminary experiment over a set of nine classes provided by the tool au-

thors. The following table B.1shows each class as well as to the number

of goals (branches) it has.

Class Name Total_Goals LoC

ATM 20 80

ATMCard 9 84

Bank 6 35

BankAccount 3 32

Owner 1 12

CurrentAccount 4 43

SavingsAccount 4 40

Company 2 24

Person 3 34

TABLE B.1: EV OSUITE Experimental Data-set

120 Appendix B. Preliminary Experiment Results

B.1 Preliminary Experiment Results

We have used each of the algorithms, namely NSGA-II, IBEA and mIBEA,

to generate test suites for the classes presented in Table B.1. Each algo-

rithm were used for 20 times (i.e. 20 runs) upon the subject CUTs. The

metrics that were collected for the generated test suites are the following,

1. Total Time: The full-time EvoSuite spent generating the test cases

2. Size: Number: of tests in resulting test suite

3. Length: Total number of statements in the final test suite

4. Covered Goals : Total number of covered goals

5. Mutation Score: The obtained score for (strong) mutation testing

6. Branch Coverage : percentage of covered branched of CUT

The following table ?? summarizes the experiment results and shows

the mean values of the above metrics.

Algorithm NSGA-II mIBEA IBEA

Size 3.68 3.68 3.64

Length 17.38 17.22 16.57

MutationScore 0.69 0.69 0.68

Coverage 1 1 1

Covered_Goals 5.78 5.78 5.74

Total_Time 6404.57 7949.37 51194.33

TABLE B.2: Preliminary Experiment Result

B.2. Preliminary Experiment box Plots 121

B.2 Preliminary Experiment box Plots

The box plots of each metric are as the following, and the following re-

sults shows that IBEA has a high execution time when being compared to

other algorithms. In fact, that is expected due to the high computational

cost when calculating the hyper-volume differences by IBEA. It’s also

worth noting here the performance of mIBEA which has way less execu-

tion time, and yet the algorithm still achieves similar Coverage and Mu-

tation score results when being compared to the base algorithm NSGA-II

which is used as a reference in comparing the results.

FIGURE B.1: Total Execution Time

122 Appendix B. Preliminary Experiment Results

FIGURE B.2: Generated Test Suite Coverage

FIGURE B.3: Generated Test Suite Mutation Score

FIGURE B.4: Generated Test Suite Size

B.2. Preliminary Experiment box Plots 123

FIGURE B.5: Generated Test Suite Length

FIGURE B.6: Generated Test Suite Covered Goals

	Introduction
	Problem Statement
	Research Questions
	Research Contribution
	Enhancing EVOSUITE Tool with IBEA algorithms
	Validating Contribution on well Known set of Classes
	Addressing the Problem Through Many objectives
	Comparison Between IBEA, mIBEA and NSGA-II

	Research Overview
	Research Activities

	Background
	Evolutionary Algorithm
	General Design of Genetic Algorithm
	Genetic Operators

	Single-objective Evolutionary Algorithms
	Multi-objective Evolutionary Algorithms
	Indicator based Evolutionary Algorithm
	A Modified Indicator-based Evolutionary Algorithm (mIBEA)
	Non-dominated Sorting Genetic Algorithm II

	EVOSUITE
	Unit Testing and Class Under Test
	Types of Code Coverage
	Whole Test Suite Generation
	Problem Representation

	Related Work
	Single Structural Target Approach
	Multi Structural Target Approach
	Adjusting Evolutionary Algorithms
	Thesis Distinction from Other Studies
	Literature Review Summary

	Research Methodology And Experiment Setup
	Experiment Data Sources
	 Experiment Setup
	 Chromosome Structure
	Fitness Function
	Branch distance
	Approach Level
	Fitness Function: Branch Coverage

	 Evaluation Metrics

	 Algorithms and EvoSuite
	Genetic Search Operators of EVOSUITE
	Chromosome Crossover
	Chromosome Mutation

	Random Test Case Generation

	 Experiment Assumptions

	Experiment Results and Analysis
	Algorithm Comparison
	Experiment Results
	Experiment Results as Box Plots
	Descriptive Statistics of Experiment Results

	Branch Coverage Analysis
	Generation Time Analysis
	Testing Metrics Analysis
	Statistical Analysis

	Conclusion And Future Work
	Threats to Validity
	Threats to construct validity
	Threats to Internal validity
	Threats to conclusion validity
	Threats to external validity

	Conclusion
	Difficulties and Obstacles
	Mastering EVOSUITE

	Future Work
	Analyzing different Variations of IBEA
	Analyzing CUT with large number of objectives
	IBEA to cover single branches at a time
	Contribute to EvoSuite

	Bibliography
	Appendices
	Thesis External Links
	Preliminary Experiment Results
	Preliminary Experiment Results
	Preliminary Experiment box Plots

